The endoplasmic reticulum (ER) of cancer cells needs to adapt to the enhanced proteotoxic stress associated with the accumulation of unfolded, misfolded, and transformation-associated proteins. One way by which tumors thrive in the context of ER stress is by promoting ER-associated degradation (ERAD), although the mechanisms are poorly understood. Here, we show that the small p97/VCP-interacting protein (SVIP), an endogenous inhibitor of ERAD, undergoes DNA hypermethylation–associated silencing in tumorigenesis to achieve this goal. SVIP exhibits tumor suppressor features and its recovery is associated with increased ER stress and growth inhibition. Proteomic and metabolomic analyses show that cancer cells with epigenetic loss of SVIP are depleted in mitochondrial enzymes and oxidative respiration activity. This phenotype is reverted upon SVIP restoration. The dependence of SVIP-hypermethylated cancer cells on aerobic glycolysis and glucose was also associated with sensitivity to an inhibitor of the glucose transporter GLUT1. This could be relevant to the management of tumors carrying SVIP epigenetic loss, because these occur in high-risk patients who manifest poor clinical outcomes. Overall, our study provides insights into how epigenetics helps deal with ER stress and how SVIP epigenetic loss in cancer may be amenable to therapies that target glucose transporters.
Pere Llinàs-Arias, Margalida Rosselló-Tortella, Paula López-Serra, Montserrat Pérez-Salvia, Fernando Setién, Silvia Marin, Juan P. Muñoz, Alexandra Junza, Jordi Capellades, María E. Calleja-Cervantes, Humberto J. Ferreira, Manuel Castro de Moura, Marina Srbic, Anna Martínez-Cardús, Carolina de la Torre, Alberto Villanueva, Marta Cascante, Oscar Yanes, Antonio Zorzano, Catia Moutinho, Manel Esteller