Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
Epigenetic loss of the endoplasmic reticulum–associated degradation inhibitor SVIP induces cancer cell metabolic reprogramming
Pere Llinàs-Arias, Margalida Rosselló-Tortella, Paula López-Serra, Montserrat Pérez-Salvia, Fernando Setién, Silvia Marin, Juan P. Muñoz, Alexandra Junza, Jordi Capellades, María E. Calleja-Cervantes, Humberto J. Ferreira, Manuel Castro de Moura, Marina Srbic, Anna Martínez-Cardús, Carolina de la Torre, Alberto Villanueva, Marta Cascante, Oscar Yanes, Antonio Zorzano, Catia Moutinho, Manel Esteller
Pere Llinàs-Arias, Margalida Rosselló-Tortella, Paula López-Serra, Montserrat Pérez-Salvia, Fernando Setién, Silvia Marin, Juan P. Muñoz, Alexandra Junza, Jordi Capellades, María E. Calleja-Cervantes, Humberto J. Ferreira, Manuel Castro de Moura, Marina Srbic, Anna Martínez-Cardús, Carolina de la Torre, Alberto Villanueva, Marta Cascante, Oscar Yanes, Antonio Zorzano, Catia Moutinho, Manel Esteller
View: Text | PDF
Research Article Oncology

Epigenetic loss of the endoplasmic reticulum–associated degradation inhibitor SVIP induces cancer cell metabolic reprogramming

  • Text
  • PDF
Abstract

The endoplasmic reticulum (ER) of cancer cells needs to adapt to the enhanced proteotoxic stress associated with the accumulation of unfolded, misfolded, and transformation-associated proteins. One way by which tumors thrive in the context of ER stress is by promoting ER-associated degradation (ERAD), although the mechanisms are poorly understood. Here, we show that the small p97/VCP-interacting protein (SVIP), an endogenous inhibitor of ERAD, undergoes DNA hypermethylation–associated silencing in tumorigenesis to achieve this goal. SVIP exhibits tumor suppressor features and its recovery is associated with increased ER stress and growth inhibition. Proteomic and metabolomic analyses show that cancer cells with epigenetic loss of SVIP are depleted in mitochondrial enzymes and oxidative respiration activity. This phenotype is reverted upon SVIP restoration. The dependence of SVIP-hypermethylated cancer cells on aerobic glycolysis and glucose was also associated with sensitivity to an inhibitor of the glucose transporter GLUT1. This could be relevant to the management of tumors carrying SVIP epigenetic loss, because these occur in high-risk patients who manifest poor clinical outcomes. Overall, our study provides insights into how epigenetics helps deal with ER stress and how SVIP epigenetic loss in cancer may be amenable to therapies that target glucose transporters.

Authors

Pere Llinàs-Arias, Margalida Rosselló-Tortella, Paula López-Serra, Montserrat Pérez-Salvia, Fernando Setién, Silvia Marin, Juan P. Muñoz, Alexandra Junza, Jordi Capellades, María E. Calleja-Cervantes, Humberto J. Ferreira, Manuel Castro de Moura, Marina Srbic, Anna Martínez-Cardús, Carolina de la Torre, Alberto Villanueva, Marta Cascante, Oscar Yanes, Antonio Zorzano, Catia Moutinho, Manel Esteller

×

Figure 6

SVIP epigenetic inactivation in human primary tumors and its association with poor clinical outcome.

Options: View larger image (or click on image) Download as PowerPoint

SVIP epigenetic inactivation in human primary tumors and its associatio...
(A) Percentage of SVIP methylation in the TCGA data set of primary tumors by cancer type. Samples were considered hypermethylated with a β value higher than 0.33. (B) SVIP promoter CpG island methylation is associated with the loss of the SVIP transcript among head and neck, cervical, and esophageal primary tumors in the TCGA data set. Two-tailed Mann-Whitney U test was performed. (C) SVIP hypermethylation is associated with a high level of expression of the GLUT1 transcript among head and neck, cervical, and esophageal primary tumors in the TCGA data set. (D) Kaplan-Meier analysis of DFS (top) and OS (below) by SVIP methylation status in head and neck primary tumors of the TCGA data set. The P value corresponds to the log-rank test. Results of the univariate Cox regression analysis are represented by the hazard ratio (HR) and 95% confidence interval (CI). (E) Multivariate Cox regression analysis of OS, represented by a forest plot, taking into account the clinical characteristics of the TCGA cohort of head and neck cancer patients. In multivariate analyses, significant covariates are considered independent prognostic factors of clinical outcome; this was the case for SVIP methylation. *P < 0.05; **P < 0.01.

Copyright © 2026 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts