Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Resource and Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact

Usage Information

Resident macrophages reprogram toward a developmental state after acute kidney injury
Jeremie M. Lever, … , Anupam Agarwal, James F. George
Jeremie M. Lever, … , Anupam Agarwal, James F. George
Published January 24, 2019
Citation Information: JCI Insight. 2019;4(2):e125503. https://doi.org/10.1172/jci.insight.125503.
View: Text | PDF
Research Article Immunology Nephrology

Resident macrophages reprogram toward a developmental state after acute kidney injury

  • Text
  • PDF
Abstract

Acute kidney injury (AKI) is a devastating clinical condition affecting at least two-thirds of critically ill patients, and, among these patients, it is associated with a greater than 60% risk of mortality. Kidney mononuclear phagocytes (MPs) are implicated in pathogenesis and healing in mouse models of AKI and, thus, have been the subject of investigation as potential targets for clinical intervention. We have determined that, after injury, F4/80hi-expressing kidney-resident macrophages (KRMs) are a distinct cellular subpopulation that does not differentiate from nonresident infiltrating MPs. However, if KRMs are depleted using polyinosinic/polycytidylic acid (poly I:C), they can be reconstituted from bone marrow–derived precursors. Further, KRMs lack major histocompatibility complex class II (MHCII) expression before P7 but upregulate it over the next 14 days. This MHCII– KRM phenotype reappears after injury. RNA sequencing shows that injury causes transcriptional reprogramming of KRMs such that they more closely resemble that found at P7. KRMs after injury are also enriched in Wingless-type MMTV integration site family (Wnt) signaling, indicating that a pathway vital for mouse and human kidney development is active. These data indicate that mechanisms involved in kidney development may be functioning after injury in KRMs.

Authors

Jeremie M. Lever, Travis D. Hull, Ravindra Boddu, Mark E. Pepin, Laurence M. Black, Oreoluwa O. Adedoyin, Zhengqin Yang, Amie M. Traylor, Yanlin Jiang, Zhang Li, Jacelyn E. Peabody, Hannah E. Eckenrode, David K. Crossman, Michael R. Crowley, Subhashini Bolisetty, Kurt A. Zimmerman, Adam R. Wende, Michal Mrug, Bradley K. Yoder, Anupam Agarwal, James F. George

×

Usage data is cumulative from December 2022 through December 2023.

Usage JCI PMC
Text version 851 327
PDF 183 97
Figure 330 7
Table 16 0
Supplemental data 66 13
Citation downloads 23 0
Totals 1,469 444
Total Views 1,913
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2023 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts