Zebrafish are increasingly utilized to model cardiomyopathies and regeneration. Current methods evaluating cardiac function have known limitations, fail to reliably detect focal mechanics, and are not readily feasible in zebrafish. We developed a semiautomated, open-source method — displacement analysis of myocardial mechanical deformation (DIAMOND) — for quantitative assessment of 4D segmental cardiac function. We imaged transgenic embryonic zebrafish in vivo using a light-sheet fluorescence microscopy system with 4D cardiac motion synchronization. Our method permits the derivation of a transformation matrix to quantify the time-dependent 3D displacement of segmental myocardial mass centroids. Through treatment with doxorubicin, and by chemically and genetically manipulating the myocardial injury–activated Notch signaling pathway, we used DIAMOND to demonstrate that basal ventricular segments adjacent to the atrioventricular canal display the highest 3D displacement and are also the most susceptible to doxorubicin-induced injury. Thus, DIAMOND provides biomechanical insights into in vivo segmental cardiac function scalable to high-throughput research applications.
Junjie Chen, Yichen Ding, Michael Chen, Jonathan Gau, Nelson Jen, Chadi Nahal, Sally Tu, Cynthia Chen, Steve Zhou, Chih-Chiang Chang, Jintian Lyu, Xiaolei Xu, Tzung K. Hsiai, René R. Sevag Packard
This file is in Adobe Acrobat (PDF) format. If you have not installed and configured the Adobe Acrobat Reader on your system.
PDFs are designed to be printed out and read, but if you prefer to read them online, you may find it easier if you increase the view size to 125%.
Many versions of the free Acrobat Reader do not allow Save. You must instead save the PDF from the JCI Online page you downloaded it from. PC users: Right-click on the Download link and choose the option that says something like "Save Link As...". Mac users should hold the mouse button down on the link to get these same options.