Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Usage Information

B lymphocytes protect islet β cells in diabetes-prone NOD mice treated with imatinib
Christopher S. Wilson, Jason M. Spaeth, Jay Karp, Blair T. Stocks, Emilee M. Hoopes, Roland W. Stein, Daniel J. Moore
Christopher S. Wilson, Jason M. Spaeth, Jay Karp, Blair T. Stocks, Emilee M. Hoopes, Roland W. Stein, Daniel J. Moore
View: Text | PDF
Research Article Metabolism

B lymphocytes protect islet β cells in diabetes-prone NOD mice treated with imatinib

  • Text
  • PDF
Abstract

Imatinib (Gleevec) reverses type 1 diabetes (T1D) in NOD mice and is currently in clinical trials in individuals with recent-onset disease. While research has demonstrated that imatinib protects islet β cells from the harmful effects of ER stress, the role the immune system plays in its reversal of T1D has been less well understood, and specific cellular immune targets have not been identified. In this study, we demonstrate that B lymphocytes, an immune subset that normally drives diabetes pathology, are unexpectedly required for reversal of hyperglycemia in NOD mice treated with imatinib. In the presence of B lymphocytes, reversal was linked to an increase in serum insulin concentration, but not an increase in islet β cell mass or proliferation. However, improved β cell function was reflected by a partial recovery of expression of the transcription factor MafA, a sensitive marker of islet β cell stress that is important for adult β cell function. Imatinib treatment was found to increase the antioxidant capacity of B lymphocytes, improving ROS handling in NOD islets. This study reveals a mechanism through which imatinib enables B lymphocytes to orchestrate functional recovery of T1D β cells.

Authors

Christopher S. Wilson, Jason M. Spaeth, Jay Karp, Blair T. Stocks, Emilee M. Hoopes, Roland W. Stein, Daniel J. Moore

×

Usage data is cumulative from December 2024 through December 2025.

Usage JCI PMC
Text version 364 57
PDF 91 11
Figure 213 0
Supplemental data 48 3
Citation downloads 107 0
Totals 823 71
Total Views 894
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts