Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Usage Information

iPreP is a three-dimensional nanofibrillar cellulose hydrogel platform for long-term ex vivo preservation of human islets
Yi-Ju Chen, … , Paul Gadue, Ben Z. Stanger
Yi-Ju Chen, … , Paul Gadue, Ben Z. Stanger
Published November 1, 2019
Citation Information: JCI Insight. 2019;4(21):e124644. https://doi.org/10.1172/jci.insight.124644.
View: Text | PDF
Resource and Technical Advance Endocrinology

iPreP is a three-dimensional nanofibrillar cellulose hydrogel platform for long-term ex vivo preservation of human islets

  • Text
  • PDF
Abstract

Islet transplantation is an effective therapy for achieving and maintaining normoglycemia in patients with type 1 diabetes mellitus. However, the supply of transplantable human islets is limited. Upon removal from the pancreas, islets rapidly disintegrate and lose function, resulting in a short interval for studies of islet biology and pretransplantation assessment. Here, we developed a biomimetic platform that can sustain human islet physiology for a prolonged period ex vivo. Our approach involved the creation of a multichannel perifusion system to monitor dynamic insulin secretion and intracellular calcium flux simultaneously, enabling the systematic evaluation of glucose-stimulated insulin secretion under multiple conditions. Using this tool, we developed a nanofibrillar cellulose hydrogel–based islet-preserving platform (iPreP) that can preserve islet viability, morphology, and function for nearly 12 weeks ex vivo, and with the ability to ameliorate glucose levels upon transplantation into diabetic hosts. Our platform has potential applications in the prolonged maintenance of human islets, providing an expanded time window for pretransplantation assessment and islet studies.

Authors

Yi-Ju Chen, Taiji Yamazoe, Karla F. Leavens, Fabian L. Cardenas-Diaz, Andrei Georgescu, Dongeun Huh, Paul Gadue, Ben Z. Stanger

×

Usage data is cumulative from December 2024 through December 2025.

Usage JCI PMC
Text version 486 44
PDF 80 19
Figure 173 0
Table 33 0
Supplemental data 104 4
Citation downloads 113 0
Totals 989 67
Total Views 1,056

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts