Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
IFN regulatory factor–8 expression in macrophages governs an antimetastatic program
Danielle Y.F. Twum, Sean H. Colligan, Nicholas C. Hoffend, Eriko Katsuta, Eduardo Cortes Gomez, Mary Lynn Hensen, Mukund Seshadri, Michael J. Nemeth, Scott I. Abrams
Danielle Y.F. Twum, Sean H. Colligan, Nicholas C. Hoffend, Eriko Katsuta, Eduardo Cortes Gomez, Mary Lynn Hensen, Mukund Seshadri, Michael J. Nemeth, Scott I. Abrams
View: Text | PDF
Research Article Immunology Oncology

IFN regulatory factor–8 expression in macrophages governs an antimetastatic program

  • Text
  • PDF
Abstract

High macrophage infiltration in cancer is associated with reduced survival in animal models and in patients. This reflects a shift in the macrophage response from a tumor-suppressive to tumor-supportive program governed by transcriptional events regulated by the inflammatory milieu. Although several transcription factors are known to drive a prometastatic program, those that govern an antimetastatic program are less understood. IFN regulatory factor-8 (IRF8) is integral for macrophage responses against infections. Using a genetic loss-of-function approach, we tested the hypothesis that IRF8 expression in macrophages governs their capacity to inhibit metastasis. We found that: (a) metastasis was significantly increased in mice with IRF8-deficient macrophages; (b) IRF8-deficient macrophages displayed a program enriched for genes associated with metastasis; and (c) lower IRF8 expression correlated with reduced survival in human breast and lung cancer, as well as melanoma, with high or low macrophage infiltration. Thus, a macrophagehiIRF8hi signature was more favorable than a macrophagehiIRF8lo signature. The same held true for a macrophageloIRF8hi vs. a macrophageloIRF8lo signature. These data suggest that incorporating IRF8 expression levels within a broader macrophage signature or profile strengthens prognostic merit. Overall, to our knowledge, our findings reveal a previously unrecognized role for IRF8 in macrophage biology to control metastasis or predict outcome.

Authors

Danielle Y.F. Twum, Sean H. Colligan, Nicholas C. Hoffend, Eriko Katsuta, Eduardo Cortes Gomez, Mary Lynn Hensen, Mukund Seshadri, Michael J. Nemeth, Scott I. Abrams

×

Figure 4

Reduced IRF8 expression in macrophages leads to increased experimental lung metastasis.

Options: View larger image (or click on image) Download as PowerPoint
Reduced IRF8 expression in macrophages leads to increased experimental l...
(A) 4T1 cells (5 × 104) were injected i.v. into chimera mice reconstituted with WT (IRF8fl/fl) or IRF8-cKO BM cells, as in Figure 2. (B) B16-F10 melanoma cells (2 × 105) were injected similarly but in syngeneic WT or IRF8-cKO genotypes. Metastatic burden was quantified ~30 days after tumor inoculation by lung weight (Mann-Whitney U test, mean ± SEM of 15 mice per group; *P < 0.05). Right, representative images of whole lung. For the 4T1 model, India ink was used to stain the metastatic nodules, which appeared white against a black tissue background, while in the B16-F10 model, the nodules were readily detectable without stain, which appeared black against a pink tissue background.

Copyright © 2026 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts