Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Resource and Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
Site-1 protease–derived soluble (pro)renin receptor targets vasopressin receptor 2 to enhance urine concentrating capability
Fei Wang, … , Donald E. Kohan, Tianxin Yang
Fei Wang, … , Donald E. Kohan, Tianxin Yang
Published April 4, 2019
Citation Information: JCI Insight. 2019;4(7):e124174. https://doi.org/10.1172/jci.insight.124174.
View: Text | PDF
Research Article Nephrology

Site-1 protease–derived soluble (pro)renin receptor targets vasopressin receptor 2 to enhance urine concentrating capability

  • Text
  • PDF
Abstract

The antidiuretic hormone vasopressin (AVP), acting through its type 2 receptor (V2R) in the collecting duct (CD), critically controls urine concentrating capability. Here, we report that site-1 protease–derived (S1P-derived) soluble (pro)renin receptor (sPRR) participates in regulation of fluid homeostasis via targeting V2R. In cultured inner medullary collecting duct (IMCD) cells, AVP-induced V2R expression was blunted by a PRR antagonist, PRO20; a PRR-neutralizing antibody; or a S1P inhibitor, PF-429242. In parallel, sPRR release was increased by AVP and reduced by PF-429242. Administration of histidine-tagged sPRR, sPRR-His, stimulated V2R expression and also reversed the inhibitory effect of PF-429242 on the expression induced by AVP. PF-429242 treatment in C57/BL6 mice impaired urine concentrating capability, which was rescued by sPRR-His. This observation was recapitulated in mice with renal tubule–specific deletion of S1P. During the pharmacological or genetic manipulation of S1P alone or in combination with sPRR-His, the changes in urine concentration were paralleled with renal expression of V2R and aquaporin-2 (AQP2). Together, these results support that S1P-derived sPRR exerts a key role in determining renal V2R expression and, thus, urine concentrating capability.

Authors

Fei Wang, Chuanming Xu, Renfei Luo, Kexin Peng, Nirupama Ramkumar, Shiying Xie, Xiaohan Lu, Long Zhao, Chang-Jiang Zuo, Donald E. Kohan, Tianxin Yang

×

Figure 3

In vivo characterization of the diuretic action of S1P inhibition in C57/BL6 mice.

Options: View larger image (or click on image) Download as PowerPoint
In vivo characterization of the diuretic action of S1P inhibition in C57...
Male C57/BL6 mice received s.c. infusion of a S1P inhibitor, PF-429242 (PF), with or without sPRR-His infusion for 4 days. The mice receiving vehicle treatment served as control. At the end of the experiment, 24-hour urine collection was performed, followed by ELISA analysis of urinary sPRR excretion. (A) ELISA analysis of urinary sPRR excretion (n = 10 mice per group). (B) Urine volume (n = 10 mice per group). (C) Urinary osmolality (n = 10 mice per group). (D) Analysis of urine osmolality response to acute AVP treatment (n = 10 mice per group). (E) ELISA analysis of plasma AVP concentration (n = 6 mice per group). (F) Plasma osmolality (n = 6 mice per group). Statistical significance was determined by using 1-way ANOVA with the Bonferroni test for multiple comparisons. *P < 0.05 vs. control; #P < 0.05 vs. PF alone.

Copyright © 2022 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts