Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
IL-33–mediated IL-13 secretion by ST2+ Tregs controls inflammation after lung injury
Quan Liu, Gaelen K. Dwyer, Yifei Zhao, Huihua Li, Lisa R. Mathews, Anish Bhaswanth Chakka, Uma R. Chandran, Jake A. Demetris, John F. Alcorn, Keven M. Robinson, Luis A. Ortiz, Bruce R. Pitt, Angus W. Thomson, Ming-Hui Fan, Timothy R. Billiar, Hēth R. Turnquist
Quan Liu, Gaelen K. Dwyer, Yifei Zhao, Huihua Li, Lisa R. Mathews, Anish Bhaswanth Chakka, Uma R. Chandran, Jake A. Demetris, John F. Alcorn, Keven M. Robinson, Luis A. Ortiz, Bruce R. Pitt, Angus W. Thomson, Ming-Hui Fan, Timothy R. Billiar, Hēth R. Turnquist
View: Text | PDF
Research Article Immunology Pulmonology

IL-33–mediated IL-13 secretion by ST2+ Tregs controls inflammation after lung injury

  • Text
  • PDF
Abstract

Acute respiratory distress syndrome is an often fatal disease that develops after acute lung injury and trauma. How released tissue damage signals, or alarmins, orchestrate early inflammatory events is poorly understood. Herein we reveal that IL-33, an alarmin sequestered in the lung epithelium, is required to limit inflammation after injury due to an unappreciated capacity to mediate Foxp3+ Treg control of local cytokines and myeloid populations. Specifically, Il33–/– mice are more susceptible to lung damage–associated morbidity and mortality that is typified by augmented levels of the proinflammatory cytokines and Ly6Chi monocytes in the bronchoalveolar lavage fluid. Local delivery of IL-33 at the time of injury is protective but requires the presence of Treg cells. IL-33 stimulates both mouse and human Tregs to secrete IL-13. Using Foxp3Cre × Il4/Il13fl/fl mice, we show that Treg expression of IL-13 is required to prevent mortality after acute lung injury by controlling local levels of G-CSF, IL-6, and MCP-1 and inhibiting accumulation of Ly6Chi monocytes. Our study identifies a regulatory mechanism involving IL-33 and Treg secretion of IL-13 in response to tissue damage that is instrumental in limiting local inflammatory responses and may shape the myeloid compartment after lung injury.

Authors

Quan Liu, Gaelen K. Dwyer, Yifei Zhao, Huihua Li, Lisa R. Mathews, Anish Bhaswanth Chakka, Uma R. Chandran, Jake A. Demetris, John F. Alcorn, Keven M. Robinson, Luis A. Ortiz, Bruce R. Pitt, Angus W. Thomson, Ming-Hui Fan, Timothy R. Billiar, Hēth R. Turnquist

×

Figure 3

IL-33 increases Tregs that are required for protective functions of IL-33 after ALI.

Options: View larger image (or click on image) Download as PowerPoint
IL-33 increases Tregs that are required for protective functions of IL-3...
(A and B) Flow cytometric assessment of CD45+CD3+CD4+CD25+ cells isolated from enzymatically digested WT B6 and B6 Il33–/– mouse lung tissue at day 8 after bleomycin revealed that delivery of IL-33 increased ST2+ Tregs in damaged Il33–/– lung tissue. Data depicted in B are the mean ± SD and are representative of 2 independent experiments, with 4–5 mice per group in each experiment. (C) Survival of B6 Foxp3DTR mice injected i.t. with bleomycin alone or with rIL-33 (1 μg i.t.) in the presence of Tregs or following their deletion with diphtheria toxin (15 μg/kg on day –3, –2, and –1, and every other day starting from day 1). Depicted data represent 1 experiment with 6–7 mice per group. P values were determined by 1-way ANOVA followed by Tukey’s multiple comparisons test (B) or log-rank test (C). *P < 0.05; **P < 0.01; ***P < 0.001. NS, not significant.

Copyright © 2026 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts