It has been reported that 2.5%–30% of human peripheral CD27– B cells are autoreactive and anergic based on unresponsiveness to antigen receptor (BCR) stimulation and autoreactivity of cloned and expressed BCR. The molecular mechanisms that maintain this unresponsiveness are unknown. Here, we showed that in humans anergy is maintained by elevated expression of PTEN, a phosphatidylinositol 3,4,5P-3-phosphatase. Upregulation of PTEN was associated with reduced expression of microRNAs that control its expression. Pharmacologic inhibition of PTEN lead to significant restoration of responsiveness. Consistent with a role in conferring risk of autoimmunity, B cells from type 1 diabetics and autoimmune thyroid disease patients expressed reduced PTEN. Unexpectedly, in healthy individuals PTEN expression was elevated in on average 40% of CD27– B cells, with levels gradually decreasing as IgM levels increase. Our findings suggest that a much higher proportion of the peripheral repertoire is autoreactive than previously thought and that B cells upregulate PTEN in a manner that is proportional to the recognition of autoantigens of increasing avidity, thus tuning BCR signaling to prevent development of autoimmunity while providing a reservoir of cells that can be readily activated to respond when needed.
Mia J. Smith, B. Rhodes Ford, Marynette Rihanek, Brianne M. Coleman, Andrew Getahun, Virginia D. Sarapura, Peter A. Gottlieb, John C. Cambier
Usage data is cumulative from April 2022 through April 2023.
Usage | JCI | PMC |
---|---|---|
Text version | 897 | 85 |
87 | 17 | |
Figure | 153 | 0 |
Table | 30 | 0 |
Supplemental data | 40 | 1 |
Citation downloads | 50 | 0 |
Totals | 1,257 | 103 |
Total Views | 1,360 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.