Right ventricular (RV) dysfunction is highly prevalent across cardiopulmonary diseases and independently predicts death in both heart failure (HF) and pulmonary hypertension (PH). Progression towards RV failure (RVF) can occur in spite of optimal medical treatment of HF or PH, highlighting current insufficient understanding of RVF molecular pathophysiology. To identify molecular mechanisms that may distinctly underlie RVF, we investigated the cardiac ventricular transcriptome of advanced-HF patients, with and without RVF. Using an integrated systems genomic and functional biology approach, we identified an RVF-specific gene module, for which WIPI1 served as a hub and HSPB6 and MAP4 as drivers, and confirmed the ventricular specificity of Wipi1, Hspb6, and Map4 transcriptional changes in adult murine models of pressure overload–induced RV versus left ventricular failure. We uncovered a shift towards noncanonical autophagy in the failing RV that correlated with RV-specific Wipi1 upregulation. In vitro siRNA silencing of Wipi1 in neonatal rat ventricular myocytes limited noncanonical autophagy and blunted aldosterone-induced mitochondrial superoxide levels. Our findings suggest that Wipi1 regulates mitochondrial oxidative signaling and noncanonical autophagy in cardiac myocytes. Together with our human transcriptomic analysis and corroborating studies in an RVF mouse model, these data render Wipi1 a potential target for RV-directed HF therapy.
Christos Tzimas, Christoph D. Rau, Petra E. Buergisser, Gaston Jean-Louis Jr., Katherine Lee, Jeffrey Chukwuneke, Wen Dun, Yibin Wang, Emily J. Tsai
Transcript and protein expression of WGCNA-identified, RVF-associated gene hub, drivers, and repressor in pulmonary artery banding (PAB) mouse model.