Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
Concomitant SK current activation and sodium current inhibition cause J wave syndrome
Mu Chen, … , James N. Weiss, Peng-Sheng Chen
Mu Chen, … , James N. Weiss, Peng-Sheng Chen
Published November 15, 2018
Citation Information: JCI Insight. 2018;3(22):e122329. https://doi.org/10.1172/jci.insight.122329.
View: Text | PDF
Research Article Cardiology

Concomitant SK current activation and sodium current inhibition cause J wave syndrome

  • Text
  • PDF
Abstract

The mechanisms of J wave syndrome (JWS) are incompletely understood. Here, we showed that the concomitant activation of small-conductance calcium-activated potassium (SK) current (IKAS) and inhibition of sodium current by cyclohexyl-[2-(3,5-dimethyl-pyrazol-1-yl)-6-methyl-pyrimidin-4-yl]-amine (CyPPA) recapitulate the phenotypes of JWS in Langendorff-perfused rabbit hearts. CyPPA induced significant J wave elevation and frequent spontaneous ventricular fibrillation (SVF), as well as sinus bradycardia, atrioventricular block, and intraventricular conduction delay. IKAS activation by CyPPA resulted in heterogeneous shortening of action potential (AP) duration (APD) and repolarization alternans. CyPPA inhibited cardiac sodium current (INa) and decelerated AP upstroke and intracellular calcium transient. SVFs were typically triggered by short-coupled premature ventricular contractions, initiated with phase 2 reentry and originated more frequently from the right than the left ventricles. Subsequent IKAS blockade by apamin reduced J wave elevation and eliminated SVF. β-Adrenergic stimulation was antiarrhythmic in CyPPA-induced electrical storm. Like CyPPA, hypothermia (32.0°C) also induced J wave elevation and SVF. It facilitated negative calcium-voltage coupling and phase 2 repolarization alternans with spatial and electromechanical discordance, which were ameliorated by apamin. These findings suggest that IKAS activation contributes to the development of JWS in rabbit ventricles.

Authors

Mu Chen, Dong-Zhu Xu, Adonis Z. Wu, Shuai Guo, Juyi Wan, Dechun Yin, Shien-Fong Lin, Zhenhui Chen, Michael Rubart-von der Lohe, Thomas H. Everett IV, Zhilin Qu, James N. Weiss, Peng-Sheng Chen

×

Figure 1

J wave syndrome is induced by CyPPA and suppressed by apamin.

Options: View larger image (or click on image) Download as PowerPoint
J wave syndrome is induced by CyPPA and suppressed by apamin.
(A) pECG d...
(A) pECG during sinus rhythm (protocol I). No J wave was observed at baseline. CyPPA accentuated J waves in all 12 hearts with either Brugada or early repolarization (ER) morphologies. Subsequent apamin attenuated J waves in all hearts. (B) CyPPA induced spontaneous ventricular fibrillation (SVF) or spontaneous ventricular tachycardia (SVT) in 11 of 12 hearts. SVFs were typically triggered by spontaneous short-coupled premature ventricular contractions (PVCs, black arrows). Atrial tachycardia and atrioventricular block were also observed. (C) Spontaneous variations of Brugada waves. (D) Summary of the J point amplitude and the episode numbers of SVF/SVT at baseline, after CyPPA and after apamin. Statistical significance was determined by 1-way ANOVA with Tukey’s post hoc test.

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts