Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Resource and Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
A humanized mouse model to study asthmatic airway inflammation via the human IL-33/IL-13 axis
Ryoji Ito, … , Mamoru Ito, Satoshi Nunomura
Ryoji Ito, … , Mamoru Ito, Satoshi Nunomura
Published November 2, 2018
Citation Information: JCI Insight. 2018;3(21):e121580. https://doi.org/10.1172/jci.insight.121580.
View: Text | PDF
Resource and Technical Advance Immunology Inflammation

A humanized mouse model to study asthmatic airway inflammation via the human IL-33/IL-13 axis

  • Text
  • PDF
Abstract

Asthma is one of the most common immunological diseases and is characterized by airway hyperresponsiveness (AHR), mucus overproduction, and airway eosinophilia. Although mouse models have provided insight into the mechanisms by which type-2 cytokines induce asthmatic airway inflammation, differences between the rodent and human immune systems hamper efforts to improve understanding of human allergic diseases. In this study, we aim to establish a preclinical animal model of asthmatic airway inflammation using humanized IL-3/GM-CSF or IL-3/GM-CSF/IL-5 Tg NOD/Shi-scid-IL2rγnull (NOG) mice and investigate the roles of human type-2 immune responses in the asthmatic mice. Several important characteristics of asthma — such as AHR, goblet cell hyperplasia, T cell infiltration, IL-13 production, and periostin secretion — were induced in IL-3/GM-CSF Tg mice by intratracheally administered human IL-33. In addition to these characteristics, human eosinophilic inflammation was observed in IL-3/GM-CSF/IL-5 Tg mice. The asthmatic mechanisms of the humanized mice were driven by activation of human Th2 and mast cells by IL-33 stimulation. Furthermore, treatment of the humanized mice with an anti–human IL-13 antibody significantly suppressed these characteristics. Therefore, the humanized mice may enhance our understanding of the pathophysiology of allergic disorders and facilitate the preclinical development of new therapeutics for IL-33–mediated type-2 inflammation in asthma.

Authors

Ryoji Ito, Shuichiro Maruoka, Kaori Soda, Ikumi Katano, Kenji Kawai, Mika Yagoto, Asami Hanazawa, Takeshi Takahashi, Tomoyuki Ogura, Motohito Goto, Riichi Takahashi, Shota Toyoshima, Yoshimichi Okayama, Kenji Izuhara, Yasuhiro Gon, Shu Hashimoto, Mamoru Ito, Satoshi Nunomura

×

Figure 2

Production of human cytokines and chemokines.

Options: View larger image (or click on image) Download as PowerPoint
Production of human cytokines and chemokines.
(A) Levels of human cytoki...
(A) Levels of human cytokines and chemokines in the BALF of hu–non-Tg (n = 4 or 6) or IL-3/GM Tg mice (n = 5 or 6) with or without IL-33 treatment were analyzed by cytometric bead array (CBA). (B) Flow cytometry of an intracellular IL-13 cytokine in human CD3+ T cells or CD203c+ mast cells isolated from the BALF and spleen of IL-33–administered hu–IL-3/GM Tg mice. Cells were stained with anti–human CD45, –CD3, –CD203c, and –IL-13 antibodies. Representative data from 3 independent experiments are shown. (C) Flow cytometry of human ILC2 in human PBMCs or in the lungs of IL-33–treated hu–IL-3/GM Tg mice (n = 3). (D) Cumulative data of cell number of human ILC2 represented in C. Cells were stained with anti–human CD45, –lineage marker, –CD161, and –CRTh2 antibodies. Statistical significance was calculated using 1-way ANOVA (A). ***P < 0.0005.

Copyright © 2023 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts