Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
Monitoring liver damage using hepatocyte-specific methylation markers in cell-free circulating DNA
Roni Lehmann-Werman, Judith Magenheim, Joshua Moss, Daniel Neiman, Ofri Abraham, Sheina Piyanzin, Hai Zemmour, Ilana Fox, Talya Dor, Markus Grompe, Giora Landesberg, Bao-Li Loza, Abraham Shaked, Kim Olthoff, Benjamin Glaser, Ruth Shemer, Yuval Dor
Roni Lehmann-Werman, Judith Magenheim, Joshua Moss, Daniel Neiman, Ofri Abraham, Sheina Piyanzin, Hai Zemmour, Ilana Fox, Talya Dor, Markus Grompe, Giora Landesberg, Bao-Li Loza, Abraham Shaked, Kim Olthoff, Benjamin Glaser, Ruth Shemer, Yuval Dor
View: Text | PDF
Resource and Technical Advance Hepatology Transplantation

Monitoring liver damage using hepatocyte-specific methylation markers in cell-free circulating DNA

  • Text
  • PDF
Abstract

Liver damage is typically inferred from serum measurements of cytoplasmic liver enzymes. DNA molecules released from dying hepatocytes are an alternative biomarker, unexplored so far, potentially allowing for quantitative assessment of liver cell death. Here we describe a method for detecting acute hepatocyte death, based on quantification of circulating, cell-free DNA (cfDNA) fragments carrying hepatocyte-specific methylation patterns. We identified 3 genomic loci that are unmethylated specifically in hepatocytes, and used bisulfite conversion, PCR, and massively parallel sequencing to quantify the concentration of hepatocyte-derived DNA in mixed samples. Healthy donors had, on average, 30 hepatocyte genomes/ml plasma, reflective of basal cell turnover in the liver. We identified elevations of hepatocyte cfDNA in patients shortly after liver transplantation, during acute rejection of an established liver transplant, and also in healthy individuals after partial hepatectomy. Furthermore, patients with sepsis had high levels of hepatocyte cfDNA, which correlated with levels of liver enzymes aspartate aminotransferase (AST) and alanine aminotransferase (ALT). Duchenne muscular dystrophy patients, in which elevated AST and ALT derive from damaged muscle rather than liver, did not have elevated hepatocyte cfDNA. We conclude that measurements of hepatocyte-derived cfDNA can provide specific and sensitive information on hepatocyte death, for monitoring human liver dynamics, disease, and toxicity.

Authors

Roni Lehmann-Werman, Judith Magenheim, Joshua Moss, Daniel Neiman, Ofri Abraham, Sheina Piyanzin, Hai Zemmour, Ilana Fox, Talya Dor, Markus Grompe, Giora Landesberg, Bao-Li Loza, Abraham Shaked, Kim Olthoff, Benjamin Glaser, Ruth Shemer, Yuval Dor

×

Figure 2

Liver-derived cfDNA in healthy individuals.

Options: View larger image (or click on image) Download as PowerPoint
Liver-derived cfDNA in healthy individuals.
(A) Concentration in genome ...
(A) Concentration in genome equivalents (Geq)/ml of hepatocyte-derived cfDNA in the plasma of healthy donors. Green, red, and blue indicate the estimation for VTN, ITIH4, and IGF2R markers, respectively. The concentration was measured by multiplying the fraction of hepatocyte cfDNA by the concentration of total cfDNA (Supplemental Figure 2). (B) Estimation of the concentration of hepatocyte-derived cfDNA in the plasma of healthy donors, averaging the values for all markers. Each data point represents one individual donor. Dashed line indicates average + 2 standard deviations. (C) Estimation of the concentration of hepatocyte-derived cfDNA in the plasma of healthy donors (n = 12) at 3 time points. T0, after a 12-hour fast; T30, half an hour after a meal; T120, two hours after a meal. (D–G) Lack of correlation between hepatocyte cfDNA in healthy donors and ALT levels (D), AST levels (E), BMI (F), and age (G) of the same donors.

Copyright © 2026 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts