Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Resource and Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
Anti-CD19 CAR T cells with high-dose melphalan and autologous stem cell transplantation for refractory multiple myeloma
Alfred L. Garfall, … , Marcela V. Maus, Carl H. June
Alfred L. Garfall, … , Marcela V. Maus, Carl H. June
Published April 19, 2018
Citation Information: JCI Insight. 2018;3(8):e120505. https://doi.org/10.1172/jci.insight.120505.
View: Text | PDF | Corrigendum
Clinical Medicine Hematology Oncology

Anti-CD19 CAR T cells with high-dose melphalan and autologous stem cell transplantation for refractory multiple myeloma

  • Text
  • PDF
Abstract

BACKGROUND. Multiple myeloma is usually fatal due to serial relapses that become progressively refractory to therapy. CD19 is typically absent on the dominant multiple myeloma cell population but may be present on minor subsets with unique myeloma-propagating properties. To target myeloma-propagating cells, we clinically evaluated autologous T cells transduced with a chimeric antigen receptor (CAR) against CD19 (CTL019). METHODS. Subjects received CTL019 following salvage high-dose melphalan and autologous stem cell transplantation (ASCT). All subjects had relapsed/refractory multiple myeloma and had previously undergone ASCT with less than 1 year progression-free survival (PFS). RESULTS. ASCT + CTL019 was safe and feasible, with most toxicity attributable to ASCT and no severe cytokine release syndrome. Two of 10 subjects exhibited significantly longer PFS after ASCT + CTL019 compared with prior ASCT (479 vs. 181 days; 249 vs. 127 days). Correlates of favorable clinical outcome included peak CTL019 frequency in bone marrow and emergence of humoral and cellular immune responses against the stem-cell antigen Sox2. Ex vivo treatment of primary myeloma samples with a combination of CTL019 and CAR T cells against the plasma cell antigen BCMA reliably inhibited myeloma colony formation in vitro, whereas treatment with either CAR alone inhibited colony formation inconsistently. CONCLUSION. CTL019 may improve duration of response to standard multiple myeloma therapies by targeting and precipitating secondary immune responses against myeloma-propagating cells. TRIAL REGISTRATION. Clinicaltrials.gov identifier NCT02135406. FUNDING. Novartis, NIH, Conquer Cancer Foundation.

Authors

Alfred L. Garfall, Edward A. Stadtmauer, Wei-Ting Hwang, Simon F. Lacey, Jan Joseph Melenhorst, Maria Krevvata, Martin P. Carroll, William H. Matsui, Qiuju Wang, Madhav V. Dhodapkar, Kavita Dhodapkar, Rituparna Das, Dan T. Vogl, Brendan M. Weiss, Adam D. Cohen, Patricia A. Mangan, Emily C. Ayers, Selene Nunez-Cruz, Irina Kulikovskaya, Megan M. Davis, Anne Lamontagne, Karen Dengel, Naseem D.S. Kerr, Regina M. Young, Donald L. Siegel, Bruce L. Levine, Michael C. Milone, Marcela V. Maus, Carl H. June

×

Figure 1

Subject flow diagram.

Options: View larger image (or click on image) Download as PowerPoint
Subject flow diagram.

Copyright © 2023 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts