Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Research

  • 2,106 Articles
  • 0 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 185
  • 186
  • 187
  • …
  • 210
  • 211
  • Next →
Integrated, multi-cohort analysis reveals unified signature of systemic lupus erythematosus
Winston A. Haynes, David James Haddon, Vivian Diep, Avani Khatri, Erika Bongen, Gloria Yiu, Imelda Balboni, Christopher R. Bolen, Rong Mao, Paul J. Utz, Purvesh Khatri
Winston A. Haynes, David James Haddon, Vivian Diep, Avani Khatri, Erika Bongen, Gloria Yiu, Imelda Balboni, Christopher R. Bolen, Rong Mao, Paul J. Utz, Purvesh Khatri
View: Text | PDF

Integrated, multi-cohort analysis reveals unified signature of systemic lupus erythematosus

  • Text
  • PDF
Abstract

Systemic lupus erythematosus (SLE) is a complex autoimmune disease that follows an unpredictable disease course and affects multiple organs and tissues. We performed an integrated, multi-cohort analysis of 7,471 transcriptomic profiles from 40 independent studies to identify robust gene expression changes associated with SLE. We identified a 93-gene signature (SLE MetaSignature) that is differentially expressed in the blood of SLE patients compared to healthy volunteers; distinguishes SLE from other autoimmune, inflammatory, and infectious diseases; and persists across diverse tissues and cell types. The SLE MetaSignature correlated significantly with disease activity and other clinical measures of inflammation. We prospectively validated the SLE MetaSignature in an independent cohort of pediatric SLE patients using a microfluidic RT-qPCR array. We found that 14 of the 93 genes in the SLE MetaSignature were independent of interferon-induced and neutrophil-related transcriptional profiles that have previously been associated with SLE. Pathway analysis revealed dysregulation associated with nucleic acid biosynthesis and immunometabolism in SLE. We further refined a neutropoeisis signature and identified novel transcripts related to immune cells and oxidative stress. Our multi-cohort, transcriptomic analysis has uncovered novel genes and pathways associated with SLE pathogenesis, with the potential to advance clinical diagnosis, biomarker development, and targeted therapeutics for SLE.

Authors

Winston A. Haynes, David James Haddon, Vivian Diep, Avani Khatri, Erika Bongen, Gloria Yiu, Imelda Balboni, Christopher R. Bolen, Rong Mao, Paul J. Utz, Purvesh Khatri

×

MAPK mutations and cigarette smoke promote the pathogenesis of pulmonary Langerhans cell histiocytosis
Huan Liu, Andrew R. Osterburg, Jennifer Flury, Zulma Swank, Dennis W. McGraw, Nishant Gupta, Kathryn A. Wikenheiser-Brokamp, Ashish Kumar, Abdellatif Tazi, Yoshikazu Inoue, Masaki Hirose, Francis X. McCormack, Michael Borchers
Huan Liu, Andrew R. Osterburg, Jennifer Flury, Zulma Swank, Dennis W. McGraw, Nishant Gupta, Kathryn A. Wikenheiser-Brokamp, Ashish Kumar, Abdellatif Tazi, Yoshikazu Inoue, Masaki Hirose, Francis X. McCormack, Michael Borchers
View: Text | PDF

MAPK mutations and cigarette smoke promote the pathogenesis of pulmonary Langerhans cell histiocytosis

  • Text
  • PDF
Abstract

Pulmonary Langerhans cell histiocytosis (PLCH) is a rare, smoking-related, lung disease characterized by dendritic cell (DC) accumulation, bronchiolocentric nodule formation, and cystic lung remodeling. Approximately 50% of PLCH patients harbor somatic BRAF-V600E mutations in cells of the myeloid/monocyte lineage. However, the rarity of the disease and lack of animal models has impeded the study of PLCH pathogenesis. Here, we established a cigarette smoke (CS)-exposed, BRAF-V600E mutant mouse model that recapitulates many hallmark characteristics of PLCH. We show that CD11c-targeted expression of BRAF-V600E increases DC responsiveness to stimuli, including the chemokine CCL20, and that mutant DC accumulation in the lungs of CS-exposed mice is due to both increased cellular viability and enhanced recruitment. Moreover, we report that the chemokine CCL7 is secreted from DCs and human peripheral blood monocytes in a BRAF-V600E-dependent manner, suggesting a possible mechanism for recruitment of cells known to dominate PLCH lesions. Inflammatory lesions and airspace dilation in BRAF-V600E mice in response to CS are attenuated by transitioning animals to filtered air and treatment with a BRAF-V600E inhibitor, PLX4720. Collectively, this model provides mechanistic insights into the role of DCs, the BRAF-V600E mutation and CS exposure in PLCH pathogenesis, and provides a platform to develop therapeutic targets.

Authors

Huan Liu, Andrew R. Osterburg, Jennifer Flury, Zulma Swank, Dennis W. McGraw, Nishant Gupta, Kathryn A. Wikenheiser-Brokamp, Ashish Kumar, Abdellatif Tazi, Yoshikazu Inoue, Masaki Hirose, Francis X. McCormack, Michael Borchers

×

Arp2/3 inactivation causes intervertebral disc and cartilage degeneration with dysregulated TonEBP-mediated osmoadaptation
Steven Tessier, Alexandra C Doolittle, Kimheak Sao, Jeremy D. Rotty, James E. Bear, Veronica Ulici, Richard F. Loeser, Irving M. Shapiro, Brian O. Diekman, Makarand V. Risbud
Steven Tessier, Alexandra C Doolittle, Kimheak Sao, Jeremy D. Rotty, James E. Bear, Veronica Ulici, Richard F. Loeser, Irving M. Shapiro, Brian O. Diekman, Makarand V. Risbud
View: Text | PDF

Arp2/3 inactivation causes intervertebral disc and cartilage degeneration with dysregulated TonEBP-mediated osmoadaptation

  • Text
  • PDF
Abstract

Extracellular matrix and osmolarity influence the development and homeostasis of skeletal tissues through Rho GTPase-mediated alteration of the actin cytoskeleton. This study investigated whether the actin-branching Arp2/3 complex, a downstream effector of the Rho GTPases Cdc42 and Rac1, plays a critical role in maintaining the health of matrix-rich and osmotically loaded intervertebral discs and cartilage. Mice with constitutive intervertebral disc and cartilage-specific deletion of the critical Arp2/3 subunit Arpc2 (Col2-Cre; Arpc2f/f) developed chondrodysplasia and spinal defects. Since these mice did not survive to adulthood, we generated mice with inducible Arpc2 deletion in disc and cartilage (Acan-CreERT2; Arpc2f/f). Inactivation of Arp2/3 at skeletal maturity resulted in growth plate closure, loss of proteoglycan content in articular cartilage, and degenerative changes in the intervertebral disc at 1 year of age. Chondrocytes with Arpc2 deletion showed compromised cell spreading on both collagen and fibronectin. Pharmacological inhibition of Cdc42 and Arp2/3 prevented the osmoadaptive transcription factor TonEBP/NFAT5 from recruiting co-factors in response to a hyperosmolarity challenge. Together, these findings suggest that Arp2/3 plays a critical role in cartilaginous tissues through the regulation of cell-extracellular matrix interactions and modulation of TonEBP-mediated osmoadaptation.

Authors

Steven Tessier, Alexandra C Doolittle, Kimheak Sao, Jeremy D. Rotty, James E. Bear, Veronica Ulici, Richard F. Loeser, Irving M. Shapiro, Brian O. Diekman, Makarand V. Risbud

×

Myocardial B cells are a subset of circulating lymphocytes with delayed transit through the heart
Luigi Adamo, Cibele Rocha-Resende, Chieh-Yu Lin, Sarah Evans, Jesse W. Williams, Hao Dun, Wenjun Li, Cedric Mpoy, Prabhakar Andhey, Buck E. Rogers, Kory Lavine, Daniel Kreisel, Maxim N. Artyomov, Gwendalyn J. Randolph, Douglas Mann
Luigi Adamo, Cibele Rocha-Resende, Chieh-Yu Lin, Sarah Evans, Jesse W. Williams, Hao Dun, Wenjun Li, Cedric Mpoy, Prabhakar Andhey, Buck E. Rogers, Kory Lavine, Daniel Kreisel, Maxim N. Artyomov, Gwendalyn J. Randolph, Douglas Mann
View: Text | PDF

Myocardial B cells are a subset of circulating lymphocytes with delayed transit through the heart

  • Text
  • PDF
Abstract

Current models of B lymphocyte biology posit that B cells continuously recirculate between lymphoid organs without accumulating in peripheral healthy tissues. Nevertheless, B lymphocytes are one of the most prevalent leukocyte populations in the naive murine heart. To investigate this apparent inconsistency in the literature, we conducted a systematic analysis of myocardial B cell ontogeny, trafficking dynamics, histology, and gene expression patterns. We found that myocardial B cells represent a subpopulation of circulating B cells that make close contact with the microvascular endothelium of the heart and arrest their transit as they pass through the heart. The vast majority (> 95%) of myocardial B cells remain intravascular, whereas few (< 5%) myocardial B cells cross the endothelium into myocardial tissue. Analyses of mice with B cell deficiency or depletion indicated that B cells modulate the myocardial leukocyte pool composition. Analysis of B cell deficient animals suggested that B cells modulate myocardial growth and contractility. These results transform our current understanding of B cell recirculation in the naive state and reveal a previously unknown relationship between B cells and myocardial physiology. Further work will be needed to assess the relevance of these findings to other organs.

Authors

Luigi Adamo, Cibele Rocha-Resende, Chieh-Yu Lin, Sarah Evans, Jesse W. Williams, Hao Dun, Wenjun Li, Cedric Mpoy, Prabhakar Andhey, Buck E. Rogers, Kory Lavine, Daniel Kreisel, Maxim N. Artyomov, Gwendalyn J. Randolph, Douglas Mann

×

Neutrophil dysregulation is pathogenic in idiopathic inflammatory myopathies
Nickie L. Seto, Jose Jiram Torres-Ruiz, Carmelo Carmona-Rivera, Iago Pinal-Fernandez, Katherine Pak, Monica M. Purmalek, Yuji Hosono, Catia Fernandes-Cerqueira, Prateek C. Gowda, Nathan Arnett, Alexander Gorbach, Olivier Benveniste, Diana Gómez-Martín, Albert Selva-O'Callaghan, Jose C. Milisenda, Josep M. Grau-Junyent, Lisa Christopher-Stine, Frederick W. Miller, Ingrid E. Lundberg, J. Michelle Kahlenberg, Adam I. Schiffenbauer, Andrew L. Mammen, Lisa G. Rider, Mariana J. Kaplan
Nickie L. Seto, Jose Jiram Torres-Ruiz, Carmelo Carmona-Rivera, Iago Pinal-Fernandez, Katherine Pak, Monica M. Purmalek, Yuji Hosono, Catia Fernandes-Cerqueira, Prateek C. Gowda, Nathan Arnett, Alexander Gorbach, Olivier Benveniste, Diana Gómez-Martín, Albert Selva-O'Callaghan, Jose C. Milisenda, Josep M. Grau-Junyent, Lisa Christopher-Stine, Frederick W. Miller, Ingrid E. Lundberg, J. Michelle Kahlenberg, Adam I. Schiffenbauer, Andrew L. Mammen, Lisa G. Rider, Mariana J. Kaplan
View: Text | PDF

Neutrophil dysregulation is pathogenic in idiopathic inflammatory myopathies

  • Text
  • PDF
Abstract

OBJECTIVES: Idiopathic inflammatory myopathies (IIM) are characterized by muscle inflammation and weakness, myositis specific autoantibodies (MSAs) and extramuscular organ damage. The role of neutrophil dysregulation and neutrophil extracellular traps (NETs) in IIM is unclear. We assessed if pathogenic neutrophil subsets (low-density granulocytes, LDGs) and NETs were elevated in IIM, associated with clinical presentation and MSAs, and their effect on skeletal myoblasts and myotubes.METHODS: Circulating NETs and LDGs were quantified and correlated with clinical measures. Specific MSAs were tested for their ability to induce NETs. NETs and neutrophil gene expression were measured in IIM biopsies. Whether NETs damage skeletal myoblasts and myotubes was tested.RESULTS: Circulating LDGs and NETs were increased in IIM. IIM LDGs had enhanced ability to form NETs. LDGs and NETs correlated with IIM disease activity and muscle damage. The serum MSA anti-MDA5 correlated with circulating and tissue NETs and directly enhanced NET formation. An enhanced neutrophil gene signature was present in IIM muscle and associated with muscle injury and tissue interferon gene signatures. IIM NETs decreased the viability of myotubes in a citrullinated histone-dependent manner. CONCLUSION: Dysregulated neutrophil pathways may play pathogenic roles in IIM through their ability to directly injure muscle cells and other affected tissues.

Authors

Nickie L. Seto, Jose Jiram Torres-Ruiz, Carmelo Carmona-Rivera, Iago Pinal-Fernandez, Katherine Pak, Monica M. Purmalek, Yuji Hosono, Catia Fernandes-Cerqueira, Prateek C. Gowda, Nathan Arnett, Alexander Gorbach, Olivier Benveniste, Diana Gómez-Martín, Albert Selva-O'Callaghan, Jose C. Milisenda, Josep M. Grau-Junyent, Lisa Christopher-Stine, Frederick W. Miller, Ingrid E. Lundberg, J. Michelle Kahlenberg, Adam I. Schiffenbauer, Andrew L. Mammen, Lisa G. Rider, Mariana J. Kaplan

×

Association of persistent wild-type measles virus RNA with long-term humoral immunity in rhesus macaques
Ashley N. Nelson, Wen-Hsuan W. Lin, Rupak Shivakoti, Nicole E. Putnam, Lisa M. Mangus, Robert J. Adams, Debra Hauer, Victoria K. Baxter, Diane E. Griffin
Ashley N. Nelson, Wen-Hsuan W. Lin, Rupak Shivakoti, Nicole E. Putnam, Lisa M. Mangus, Robert J. Adams, Debra Hauer, Victoria K. Baxter, Diane E. Griffin
View: Text | PDF

Association of persistent wild-type measles virus RNA with long-term humoral immunity in rhesus macaques

  • Text
  • PDF
Abstract

Recovery from measles results in life-long protective immunity. To understand induction of long-term immunity, rhesus macaques were studied for six months after infection with WT measles virus (MeV). Infection caused viremia and rash with clearance of infectious virus by 14 days. MeV RNA persisted in PBMCs for 30-90 days and in lymphoid tissue for 6 months most often in B cells but was rarely detected in BM. Antibody with neutralizing activity and binding specificity for MeV nucleocapsid (N), hemagglutinin (H) and fusion proteins appeared with the rash and avidity matured over 3-4 months. Lymph nodes had increasing numbers of MeV-specific antibody-secreting cells (ASCs) and germinal centers with late hyalinization. ASCs appeared in circulation with the rash and continued to appear along with peripheral Tfh cells for the study duration. ASCs in lymph nodes and PBMCs produced antibody to both H and N, with more H-specific ASCs in BM. From 14-21 days 20-100-fold more total ASCs than MeV-specific ASCs appeared in circulation suggesting mobilization of pre-existing ASCs. Therefore, persistence of MeV RNA in lymphoid tissue was accompanied by continued germinal center formation, ASC production, avidity maturation and accumulation of H-specific ASCs in BM to sustain neutralizing antibody and protective immunity.

Authors

Ashley N. Nelson, Wen-Hsuan W. Lin, Rupak Shivakoti, Nicole E. Putnam, Lisa M. Mangus, Robert J. Adams, Debra Hauer, Victoria K. Baxter, Diane E. Griffin

×

Stiff matrix instigates type I collagen biogenesis by mammalian cleavage factor I complex-mediated alternative polyadenylation
Zijing Zhou, Jing Qu, Li He, Yi Zhu, Shanzhong Yang, Feng Zhang, Ting Guo, Hong Peng, Ping Chen, Yong Zhou
Zijing Zhou, Jing Qu, Li He, Yi Zhu, Shanzhong Yang, Feng Zhang, Ting Guo, Hong Peng, Ping Chen, Yong Zhou
View: Text | PDF

Stiff matrix instigates type I collagen biogenesis by mammalian cleavage factor I complex-mediated alternative polyadenylation

  • Text
  • PDF
Abstract

Alternative polyadenylation (APA) is a widespread and important mechanism in regulation of gene expression. Dysregulation of the 3’ UTR cleavage and polyadenylation represents a common characteristic among many disease states including lung fibrosis. In this study, we investigated the role of mammalian cleavage factor I (CFIm)-mediated APA in regulating the extracellular matrix production in response to mechanical stimuli from stiffened matrix simulating the fibrotic lungs. We found that stiff matrix downregulates expression of CFIm68, CFIm59 and CFIm25 subunits, and promotes APA in favor of the proximal poly(A) site usage in the 3’ UTRs of type I collagen (COL1A1) and fibronectin (FN1) in primary human lung fibroblasts. Knockdown and overexpression of each individual CFIm subunit demonstrated that CFIm68 and CFIm25 are indispensable attributes of stiff matrix-induced APA and overproduction of COL1A1, whereas CFIm does not appear to mediate stiffness-regulated FN1 APA. Furthermore, expression of the CFIm subunits is associated with matrix stiffness in vivo in a bleomycin-induced mouse model of pulmonary fibrosis. These data suggest that stiff matrix instigates type I collagen biogenesis by selectively targeting mRNA transcripts for 3’ UTR shortening. The current study uncovered a potential mechanism for regulation of the CFIm complex by mechanical cues under fibrotic conditions.

Authors

Zijing Zhou, Jing Qu, Li He, Yi Zhu, Shanzhong Yang, Feng Zhang, Ting Guo, Hong Peng, Ping Chen, Yong Zhou

×

Regeneration after acute kidney injury requires PTIP mediated epigenetic modifications
Abdul Soofi, Ana P. Kutschat, Mohammad H. Azam, Ann M. Laszczyk, Gregory R. Dressler
Abdul Soofi, Ana P. Kutschat, Mohammad H. Azam, Ann M. Laszczyk, Gregory R. Dressler
View: Text | PDF

Regeneration after acute kidney injury requires PTIP mediated epigenetic modifications

  • Text
  • PDF
Abstract

Adult renal proximal tubules are composed of terminally differentiated epithelial cells that exhibit few signs of proliferation over time. However, upon acute kidney injury (AKI), surviving epithelial cells can re-enter the mitotic cycle and express genes and proteins coincident with a dedifferentiated, more embryonic phenotype. While a stable, terminally differentiated cellular phenotype is thought to be maintained, at least in part, by epigenetic imprints that impart both active and repressive histone marks, it is unclear whether regenerating cells after injury need to replicate such marks to recover. To test whether renal epithelial cell regeneration is dependent on histone H3K4 methylation, we generated a mouse model that deleted the Paxip1 gene in mature renal proximal tubules. Paxip1 encodes the adaptor protein PTIP, which is part of an Mll3/4 histone H3K4 methyltransferase complex and is essential for embryonic development. Mice with PTIP deletions in the adult kidney proximal tubules were viable and fertile. Upon acute kidney injury, such mice failed to regenerate damaged tubules leading to scarring and interstitial fibrosis. The inability to repair damage was likely due to a failure to re-enter mitosis and reactivate regulatory genes such as Sox9, which is necessary for epithelial cell regeneration. PTIP deletion reduced histone H3K4 methylation in uninjured adult kidneys but did not significantly affect function or the expression of epithelial specific markers. A transient decrease in trimethylation was also observed in controls after AKI but returned to normal after repair. Strikingly, cell lineage tracing revealed that surviving PTIP mutant cells could alter their phenotype and lose epithelial markers. These data demonstrate that PTIP and associated MLL3/4 mediated histone methylation are needed for regenerating proximal tubules and to maintain or reestablish the cellular epithelial phenotype.

Authors

Abdul Soofi, Ana P. Kutschat, Mohammad H. Azam, Ann M. Laszczyk, Gregory R. Dressler

×

Reciprocal immune enhancement of dengue and Zika virus infection in human skin
Priscila M.S. Castanha, Geza Erdos, Simon C. Watkins, Louis D. Falo, Jr., Ernesto T.A. Marques, Simon M. Barratt-Boyes
Priscila M.S. Castanha, Geza Erdos, Simon C. Watkins, Louis D. Falo, Jr., Ernesto T.A. Marques, Simon M. Barratt-Boyes
View: Text | PDF

Reciprocal immune enhancement of dengue and Zika virus infection in human skin

  • Text
  • PDF
Abstract

Dengue (DENV) and Zika viruses (ZIKV) are closely related mosquito-borne flaviviruses that co-circulate in tropical regions and constitute major threats to global human health. Whether preexisting immunity to one virus affects disease caused by the other during primary or secondary infections is unknown but is critical in preparing for future outbreaks and predicting vaccine safety. Using a human skin explant model, we show that DENV-3 immune sera increased recruitment and infection of Langerhans cells, macrophages and dermal dendritic cells following inoculation with DENV-2 or ZIKV. Similarly, ZIKV immune sera enhanced infection with DENV-2. Immune sera increased migration of infected Langerhans cells to dermis and emigration of infected cells out of skin. Heterotypic immune sera increased viral RNA in dermis almost tenfold and reduced the amount of virus required to infect a majority of myeloid cells by 100 to 1,000 fold. Enhancement was associated with cross-reactive IgG and induction of IL-10 expression and was mediated by both CD32 and CD64 Fcγ receptors. These findings reveal that preexisting heterotypic immunity greatly enhances DENV and ZIKV infection, replication and spread in human skin. This relevant tissue model will be valuable in assessing the efficacy and risk of dengue and Zika vaccines in humans.

Authors

Priscila M.S. Castanha, Geza Erdos, Simon C. Watkins, Louis D. Falo, Jr., Ernesto T.A. Marques, Simon M. Barratt-Boyes

×

Ultrasound-induced microbubble cavitation via a transcanal or transcranial approach facilitates inner ear drug delivery
Ai-Ho Liao, Chih-Hung Wang, Ping-Yu Weng, Yi-Chun Lin, Hao Wang, Hang-Kang Chen, Hao-Li Liu, Ho-Chiao Chuang, Cheng-Ping Shih
Ai-Ho Liao, Chih-Hung Wang, Ping-Yu Weng, Yi-Chun Lin, Hao Wang, Hang-Kang Chen, Hao-Li Liu, Ho-Chiao Chuang, Cheng-Ping Shih
View: Text | PDF

Ultrasound-induced microbubble cavitation via a transcanal or transcranial approach facilitates inner ear drug delivery

  • Text
  • PDF
Abstract

Ultrasound-induced microbubble (USMB) cavitation is widely used to promote drug delivery. Our previous study investigated USMB targeting round window membrane by applying the ultrasound transducer to tympanic bulla. In the present study we further extended the use of this technology to enhance drug delivery to inner ear by introducing the ultrasound transducer into external auditory canal (EAC) or applying it to skull. Using a three-dimensional-printed diffusion apparatus mimicking the pathway for ultrasound passing through and reaching middle ear cavity in vitro, both models simulating the transcanal and transcranial approach demonstrated 4.8-fold and 3.7-fold higher delivery efficiencies, respectively. In vivo model of guinea pigs, by filling tympanic bulla with microbubbles and biotin-fluorescein (biotin-FITC), USMB applied transcanally and transcranially induced 2.8-fold and 1.5-fold increases in biotin-FITC delivery efficiencies, respectively. In addition, the gentamicin uptake by cochlear and vestibular hair cells and gentamicin-induced hair cell loss were significantly enhanced following transcanal application of USMB. On the 28th day after transcanal USMB, safety assessment showed no significant changes in the hearing thresholds and the integrity of cochlea. These are the first results to demonstrate the feasibility and support the potential clinical application of applying USMB via EAC to facilitate drug delivery into inner ear.

Authors

Ai-Ho Liao, Chih-Hung Wang, Ping-Yu Weng, Yi-Chun Lin, Hao Wang, Hang-Kang Chen, Hao-Li Liu, Ho-Chiao Chuang, Cheng-Ping Shih

×
  • ← Previous
  • 1
  • 2
  • …
  • 185
  • 186
  • 187
  • …
  • 210
  • 211
  • Next →

No posts were found with this tag.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts