Diarrhea is a major side effect of ErbB receptor tyrosine kinase inhibitors (TKIs) in cancer chemotherapy. Here, we show that the primary mechanism of ErbB TKI diarrhea is activation of basolateral membrane potassium (K+) channels and apical membrane chloride (Cl-) channels in intestinal epithelia, and demonstrate the efficacy of channel blockers in a rat model of TKI diarrhea. Short-circuit current in colonic epithelial cells showed that the TKIs gefitinib, lapatinib and afatinib do not affect basal secretion, but amplify carbachol-stimulated secretion by 2 to 3 fold. Mechanistic studies with the second-generation TKI afatinib showed that the amplifying effect on Cl- secretion was Ca2+ and cAMP independent, blocked by CFTR and K+ channel inhibitors, and involved the EGF receptor binding and ERK signaling. Afatinib-amplified activation of basolateral K+ and apical Cl- channels was demonstrated by selective membrane permeabilization, ion substitution and channel inhibitors. Rats administered afatinib orally at 60 mg/kg/day developed diarrhea with increased stool water from ~60% to >80%, which was reduced by up to 75% the K+ channel inhibitors clotrimazole or senicapoc, or the CFTR inhibitor (R)-BPO-27. These results indicate a mechanism for TKI diarrhea involving K+ and Cl- channel activation, and support the therapeutic efficacy of channel inhibitors.
Tianying Duan, Onur Cil, Jay R. Thiagarajah, Alan S Verkman
The angiopoietin (Ang)-Tie2 signaling pathway is essential for maintaining vascular homeostasis and its dysregulation is associated with several diseases. Interactions between Tie2 and α5β1 integrin have emerged as part of this control; however, the mechanism is incompletely understood. AXT107, a collagen IV-derived peptide, has strong anti-permeability activity and has enabled the elucidation of this previously undetermined mechanism. Previously, AXT107 was shown to inhibit VEGFR2 and other growth factor signaling via receptor tyrosine kinase association with specific integrins. AXT107 disrupts α5β1 and stimulates the relocation of Tie2 and α5 to cell junctions. In the presence of Ang2 and AXT107, junctional Tie2 is activated, downstream survival signals are upregulated, F-actin is rearranged to strengthen junctions, and, as a result, endothelial junctional permeability is reduced. These data suggest that α5β1 sequesters Tie2 in non-junctional locations in endothelial cell membranes and that AXT107-induced disruption of α5β1 promotes clustering of Tie2 at junctions and converts Ang2 into a strong agonist, similar to responses observed when Ang1 levels greatly exceed those of Ang2. The potentiation of Tie2 activation by Ang2 even extended in to mouse models in which AXT107 induced Tie2 phosphorylation in a model of hypoxia and inhibited vascular leakage in an Ang2-overexpression transgenic model and an LPS-induced inflammation model. Since Ang2 levels are very high in ischemic diseases, such as diabetic macular edema, neovascular age-related macular degeneration, uveitis, and cancer, targeting α5β1 with AXT107 provides a novel and potentially more effective approach to treat these diseases.
Adam C. Mirando, Jikui Shen, Raquel Lima e Silva, Zenny Chu, Nicholas Sass, Valeria E. Lorenc, Jordan J. Green, Peter A. Campochiaro, Aleksander S. Popel, Niranjan B. Pandey
Abnormal activation of neddylation modification and dysregulated energy metabolism are frequently seen in many types of cancer cells. Whether and how neddylation modification affects cellular metabolism remains largely unknown. Here we showed that MLN4924, a small molecule inhibitor of neddylation modification, induces mitochondrial fission-to-fusion conversion in breast cancer cells via inhibiting ubiquitylation and degradation of fusion-promoting protein mitofusin (MFN1) by SCFβ-TrCP E3 ligase and blocking the mitochondrial translocation of fusion-inhibiting protein DRP1. Importantly, MLN4924-induced mitochondrial fusion is independent of cell cycle progression, but confers cellular survival. The Mass-Spectrometry-based metabolic profiling and mitochondrial functional assays reveal that MLN4924 inhibits TCA cycle, but promotes mitochondrial OXPHOS. MLN4924 also increases glycolysis by activating PKM2 via promoting its tetramerization. Biologically, MLN4924 coupled with OXPHOS inhibitor metformin, or glycolysis inhibitor shikonin, significantly inhibits cancer cell growth both in vitro and in vivo. Together, our study links neddylation modification and energy metabolism, and provides sound strategies for effective combinational cancer therapies.
Qiyin Zhou, Hua Li, Yuanyuan Li, Mingjia Tan, Shaohua Fan, Cong Cao, Feilong Meng, Ling Zhu, Lili Zhao, Min-Xin Guan, Hongchuan Jin, Yi Sun
Allergic eosinophilic asthma is a chronic condition causing airway remodeling resulting in lung dysfunction. We observed that expression of Sirtuin 2 (Sirt2), a histone deacetylase, regulates the recruitment of eosinophils after sensitization and challenge with a triple-antigen: dust mite, ragweed and Aspergillus fumigatus (DRA). Our data demonstrate that IL-4 regulates the expression of Sirt2 isoform 3/5. Pharmacological inhibition of Sirt2 by AGK2 resulted in diminished cellular recruitment, decreased CCL17/TARC, and reduced goblet cell hyperplasia. YM1 and Fizz1 expression was reduced in AGK2-treated, IL-4-stimulated lung macrophages in vitro as well as in lung macrophages from AGK2-DRA challenged mice. Conversely, overexpression of Sirt2 resulted in increased cellular recruitment, CCL17 production, and goblet cell hyperplasia following DRA challenge. Sirt2 isoform 3/5 was upregulated in primary human alveolar macrophages following IL-4 and AGK2 treatment resulted in reduced CCL17 and markers of alternative activation. These gain-of-function and loss-of-function studies indicate that Sirt2 could be developed as a treatment for eosinophilic asthma.
Yong Gyu Lee, Brenda F. Reader, Derrick Herman, Adam Streicher, Joshua A. Englert, Mathias Ziegler, Sangwoon Chung, Manjula Karpurapu, Gye Young Park, John W. Christman, Megan N. Ballinger
Evidence has emerged that the failing heart increases utilization of ketone bodies. We sought to determine whether this fuel shift is adaptive. Mice rendered incapable of oxidizing the ketone body 3-hydroxybutyrate (3OHB) in heart exhibited worsened heart failure in response to fasting or a pressure overload/ischemic insult compared to wild-type controls. Increased delivery of 3OHB ameliorated pathologic cardiac remodeling and dysfunction in mice and in a canine pacing model of progressive heart failure. 3OHB was shown to enhance bioenergetic thermodynamics of isolated mitochondria in the context of limiting levels of fatty acids. These results indicate that the heart utilizes 3OHB as a metabolic stress defense and suggest that strategies aimed at increasing ketone delivery to the heart could prove useful in the treatment of heart failure.
Julie L. Horton, Michael T. Davidson, Clara Kurishima, Rick B. Vega, Jeffery C. Powers, Timothy R. Matsuura, Christopher Petucci, E. Douglas Lewandowski, Peter A. Crawford, Deborah M. Muoio, Fabio A. Recchia, Daniel P. Kelly
No posts were found with this tag.