Glioblastoma is a highly malignant brain tumor with no curative treatment options, and immune checkpoint blockade has not yet shown major impact. We hypothesized that drugs targeting mitosis might impact the tumor microenvironment and sensitize cancer cells to immunotherapy. We used two glioblastoma mouse models with different immunogenicity profiles, GL261 and SB28, to test the efficacy of antineoplastic and immunotherapy combinations. The spindle assembly checkpoint activator BAL101553 (lisavanbulin), agonistic anti-CD40 antibody, and double immune checkpoint blockade (anti-PD-1 and anti-CTLA-4) were evaluated individually or in combination for treating orthotopic GL261 and SB28 tumors. Genomic and immunological analyses were used to predict and interpret therapy responsiveness. BAL101553 monotherapy increased survival in immune checkpoint blockade resistant SB28 glioblastoma tumors and synergized with anti-CD40 antibody, in a T-cell independent manner. In contrast, the more immunogenic and highly mutated GL261 model responded best to anti-PD-1 and anti-CTLA-4 therapy and more modestly to BAL101553 and anti-CD40 combination. Our results show that BAL101553 is a promising therapeutic agent for glioblastoma and could synergize with innate immune stimulation. Overall, these data strongly support immune profiling of glioblastoma patients and preclinical testing of combination therapies with appropriate models for particular patient groups.
Vassilis Genoud, Felipe I. Espinoza, Eliana Marinari, Viviane Rochemont, Pierre-Yves Dietrich, Paul McSheehy, Felix Bachmann, Heidi A. Lane, Paul R. Walker
Kawasaki disease (KD) is the leading cause of acquired heart disease among children. Murine and human data suggest that the NLRP3-IL-1β pathway is the main driver of KD pathophysiology. NLRP3 can be activated during defective autophagy/mitophagy. We used the Lactobacillus casei cell wall extract (LCWE) murine model of KD vasculitis, to examine the role of autophagy/mitophagy on cardiovascular lesion development. LCWE-injected mice had impaired autophagy/mitophagy and increased levels of ROS in cardiovascular lesions, together with increased systemic 8-OHdG release. Enhanced autophagic flux significantly reduced cardiovascular lesions in LCWE-injected mice, whereas autophagy blockade increased inflammation. Vascular smooth muscle cell specific deletion of Atg16l1 and global Parkin-/- significantly increased disease formation, supporting the importance of autophagy/mitophagy in this model. Ogg1-/- mice had significantly increased lesions with increased NLRP3 activity, whereas treatment with MitoQ, reduced vascular tissue inflammation, ROS production and systemic 8-OHdG release. Treatment with MN58b or Metformin (increasing AMPK and reducing ROS), resulted in decreased disease formation. Our results demonstrate that impaired autophagy/mitophagy and ROS-dependent damage exacerbate the development of murine KD vasculitis. This pathway can be efficiently targeted to reduce disease severity. These findings enhance our understanding of KD pathogenesis and identify novel therapeutic avenues for KD treatment.
Stefanie Marek-Iannucci, A. Beyza Ozdemir, Debbie Moreira, Angela C. Gomez, Malcolm Lane, Rebecca A Porritt, Youngho Lee, Kenichi Shimada, Masanori Abe, Aleksandr Stotland, David Zemmour, Sarah Parker, Elsa Sanchez-Lopez, Jennifer Van Eyk, Roberta A. Gottlieb, Michael Fishbein, Michael Karin, Timothy R Crother, Magali Noval Rivas, Moshe Arditi
Oligoarticular juvenile idiopathic arthritis (oligo JIA) is the most common form of chronic inflammatory arthritis in children; yet, the cause of this disease remains unknown. To understand immune responses in oligo JIA, we immunophenotyped synovial fluid T cells with flow cytometry, bulk and single-cell RNA sequencing, DNA methylation studies, and Treg suppression assays. In synovial fluid, CD4+, CD8+, and γδ T cells expressed Th1-related markers, while Th17 cells were not enriched. Th1 skewing was prominent in CD4+ T cells, including Tregs, and was associated with severe disease. Transcriptomic studies confirmed a Th1 signature in CD4+ T cells from synovial fluid. The regulatory gene expression signature was preserved in Tregs, even those exhibiting Th1 polarization. These Th1-like Tregs maintained Treg specific methylation patterns and suppressive function, supporting the stability of this Treg population in the joint. While synovial fluid CD4+ T cells displayed an overall Th1 phenotype, scRNA-seq uncovered heterogeneous effector and regulatory sub-populations, including interferon-induced Tregs, peripheral helper T cells, and cytotoxic CD4+ T cells. In conclusion, oligo JIA is characterized by Th1 polarization that encompasses Tregs but does not compromise their regulatory identity. Targeting Th1-driven inflammation and augmenting Treg function may represent important therapeutic approaches in oligo JIA.
Amélie M. Julé, Kacie J. Hoyt, Kevin Wei, Maria Gutierrez-Arcelus, Maria L. Taylor, Julie Ng, James A. Lederer, Siobhan M. Case, Margaret H. Chang, Ezra M. Cohen, Fatma Dedeoglu, Melissa M. Hazen, Jonathan S. Hausmann, Olha Halyabar, Erin Janssen, Jeffrey Lo, Mindy S. Lo, Esra Meidan, Jordan E. Roberts, Mary Beth F. Son, Robert P. Sundel, Pui Y. Lee, Talal Chatila, Peter A. Nigrovic, Lauren A. Henderson
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused the pandemic Coronavirus Disease 2019 (COVID-19) and now many face the burden of prolonged symptoms—long-lasting COVID-19 symptoms or “long-COVID”. Long-COVID is thought to be linked to immune dysregulation due to harmful inflammation, with the exact causes being unknown. Given the role of the microbiome in mediating inflammation, we aimed to examine the relationship between the oral microbiome and the duration of long-COVID symptoms. Tongue swabs were collected from patients presenting with symptoms concerning for COVID-19. Confirmed infections were followed until resolution of all symptoms. Bacterial composition was determined by metagenomic sequencing. We used random forest modeling to identify microbiota and clinical covariates that associated with long-COVID symptoms. Of the patients followed, 63% (17/27) developed ongoing symptomatic COVID-19 and 37% (10/27) went on to long-COVID. Patients with prolonged symptoms had significantly higher abundances of microbiota that induce inflammation, such as members of the genera Prevotella and Veillonella. Of note are species that produce lipopolysaccharides and the similarity of long-COVID patients’ oral microbiome to those of patients with chronic fatigue syndrome. All together, we our findings suggest an association with the oral microbiome and long-COVID revealing the possibility that dysfunction of the oral microbiome may contribute to this draining disease.
John P. Haran, Evan Bradley, Abigail L. Zeamer, Lindsey Cincotta, Marie-Claire Salive, Protiva Dutta, Shafik Mutaawe, Otuwe Anya, Mario Meza-Segura, Ann M. Moormann, Doyle V. Ward, Beth A. McCormick, Vanni Bucci
Dilated cardiomyopathy (DCM) is the most common form of cardiomyopathy and main indication for heart transplantation in children. Therapies specific to pediatric DCM remains limited due to lack of a disease model. Our previous study showed that treatment of neonatal rat ventricular myocytes (NRVMs) with non-failing or DCM pediatric patient serum activates the fetal gene program (FGP). Here we show that serum treatment with Proteinase K prevents activation of the FGP, whereas RNase treatment exacerbates it, suggesting that circulating proteins, but not circulating microRNAs, promote these pathological changes. Evaluation of the protein secretome showed that midkine (MDK) is up-regulated in DCM serum, and NRVM treatment with MDK activates the FGP. Changes in gene expression in serum-treated NRVMs, evaluated by next-generation RNA sequencing (RNA-Seq), indicates extracellular matrix remodeling and focal adhesion pathways are upregulated in pediatric DCM serum and serum-treated NRVMs, suggesting alterations in cellular stiffness. Cellular stiffness was evaluated by Atomic Force Microscopy, which showed an increase in stiffness in DCM serum-treated NRVMs. Of the proteins increased in DCM sera, secreted frizzled related protein 1 (sFRP1) was a potential candidate for the increase in cellular stiffness, and sFRP1 treatment of NRVMs recapitulated the increase in cellular stiffness observed in response to DCM-serum treatment. Our results show that serum circulating proteins promote pathological changes in gene expression and cellular stiffness, and circulating miRNAs are protective against pathological changes.
Danielle A. Jeffrey, Julie Pires Da Silva, Anastacia M. Garcia, Xuan Jiang, Anis Karimpour-Fard, Lee S. Toni, Thomas Lanzicher, Brisa Peña, Carissa A. Miyano, Karin Nunley, Armin Korst, Orfeo Sbaizero, Matthew R.G. Taylor, Shelley D. Miyamoto, Brian L. Stauffer, Carmen C. Sucharov
Myelofibrosis (MF) is a progressive chronic myeloproliferative neoplasm characterized by hyperactivation of JAK/STAT signaling and dysregulation of the transcription factor GATA1 in megakaryocytes (MKs). TGFβ plays a pivotal role in the pathobiology of MF by promoting bone marrow fibrosis and collagen deposition and by enhancing the dormancy of normal hematopoietic stem cells (HSCs). In this study, we show that MF MKs elaborated significantly greater levels of TGFβ1 than TGFβ2 and TGFβ3 to a varying degree, and evaluated the ability of AVID200 a potent TGFβ1/3 protein trap, to block the excessive TGFβ signaling. Treatment of human mesenchymal stromal cells (MSCs) with AVID200 significantly reduced their proliferation, decreased phosphorylation of SMAD2, and interfered with the ability of TGFβ1 to induce collagen expression. Moreover, treatment of MF mononuclear cells (MNCs) with AVID200 led to increased numbers of progenitor cells (PC) with wild type JAK2 rather than mutated JAK2V617F. This effect of AVID200 on MF PC was attributed to its ability to block TGFβ1-induced p57Kip2 expression and SMAD2 activation thereby allowing normal rather than MF PCs to preferentially proliferate, and form hematopoietic colonies. To assess the in vivo effects of AVID200, Gata1low mice, a murine model of MF, were treated with AVID200 resulting in the reduction in bone marrow (BM) fibrosis and an increase in BM cellularity. AVID200 treatment also increased the frequency and numbers of murine progenitor cells as well as short and long term HSCs. Collectively, these data provide the rationale for TGFβ1 blockade with AVID200 as a therapeutic strategy for MF patients.
Lilian Varricchio, Camelia Iancu-Rubin, Bhaskar Upadhyaya, Maria Zingariello, Fabrizio Martelli, Paola Verachi, Cara Clementelli, Jean-Francois Denis, Adeeb H. Rahman, Gilles Tremblay, John Mascarenhas, Ruben A. Mesa, Maureen O'Connor-McCourt, Anna Rita Migliaccio, Ronald Hoffman
We identified a microRNA (miRNA) profile characterizing HIV lipodystrophy and explored the downstream mechanistic implications with respect to adipocyte biology and the associated clinical phenotype. miRNA profiles were extracted from small extracellular vesicles (sEV) of HIV-infected individuals with and without lipodystrophic changes and individuals without HIV, among whom we previously showed significant reductions in adipose Dicer expression related to HIV. miR-20a-3p was increased and miR-324-5p and miR-186 reduced in sEV from HIV lipodystrophic individuals. Changes in these miRNAs correlated with adipose Dicer expression and clinical markers of lipodystrophy, including fat redistribution, insulin resistance, and hypertriglyceridemia. Human preadipocytes transfected with mimic miR-20a-3p, anti-miR-324-5p or anti-miR-186 induced consistent changes in Ltbp2, Wisp2, and Nebl expression. Knockdown of Ltbp2 (Latent-transforming growth factor beta-binding protein 2) downregulated markers of adipocyte differentiation (Fabp4, Pparg, C/ebpa, Fasn, adiponectin, Glut4, CD36), and Lamin C, and increased expression of genes involved in inflammation (IL1β, IL6, and Ccl20). Our studies suggest a unique sEV miRNA signature related to dysregulation of Dicer in adipose in HIV. Enhanced miR-20a-3p or depletion of miR-186 and miR-324-5p may downregulate Ltbp2 in HIV leading to dysregulation in adipose differentiation and inflammation, which could contribute to acquired HIV lipodystrophy and associated metabolic and inflammatory perturbations.
Suman Srinivasa, Ruben Garcia-Martin, Martin Torriani, Kathleen V. Fitch, Anna R. Carlson, C. Ronald Kahn, Steven K. Grinspoon
BACKGROUND. Immune checkpoint inhibitors (ICIs), which have transformed the care of multiple malignancies, fail to demonstrate efficacy in pancreatic cancer. Recently, genomic biomarkers have been associated with response to ICIs: microsatellite instability high (MSI-H) and tumor mutation burden (TMB) ≥10 mutations/Mb. Some investigations suggest that alterations in Switch/Sucrose Non-Fermentable (SWI/SNF) chromatin remodeling genes may predispose to improved outcomes with immunotherapy. The current study examined a possible role for SWI/SNF complex abnormalities in pancreatic cancer responsiveness to ICIs. METHODS. We interrogated a database of 6,831 cancer patients that had undergone next generation sequencing (NGS) in order to evaluate those with advanced pancreatic cancer, SWI/SNF alterations, and outcomes depending on immunotherapy treatment. RESULTS. Of 6,831 cancer patients, nine had metastatic pancreatic adenocarcinoma harboring SWI/SNF chromatin remodeling gene alterations and had received ICIs: seven had an ARID1A alteration (77%); two, ARID1B (22%); three, SMARCA4 (33%); one, SMARCB1 (11%); and one, PBRM1 (11%). Three patients possessed more than one SWI/SNF complex alteration. Only three tumors were microsatellite unstable. Eight of 9 patients (89%) achieved an objective response, including a complete remission, with the two longest responses ongoing at 33+ and 36+ months. Median progression-free and overall survival was 9 and 15 months, respectively. Responses occurred even in the presence of microsatellite stability, low TMB and/or low PD-L1 expression. CONCLUSION. A small subset of patients with pancreatic cancer have genomic alterations in the SWI/SNF chromatin remodeling components and these patients appear to be responsive to ICIs, suggesting the need for prospective trials. TRIAL REGISTRATION. ClinicalTrials.gov NCT02478931 FUNDING. Joan and Irwin Jacobs Fund and by National Cancer Institute at the National Institutes of Health [Grant No. NIH P30 CA023100 (RK) and LRP KYGF9753 (GPB), as well as the Gershenson Family, the Duarte Family, and anonymous patient donors (GPB).
Gregory P. Botta, Shumei Kato, Hitendra Patel, Paul Fanta, Suzanna Lee, Ryosuke Okamura, Razelle Kurzrock
Nox2 is a ROS-generating enzyme, deficiency of which increases suppression by Tregs in vitro and in an in vivo model of cardiac remodelling. Since Tregs have emerged as a candidate therapy in autoimmunity and transplantation, we hypothesised that Nox2 deficiency in Tregs in recipient mice may improve outcomes in a heart transplant model. A novel B6129 mouse model with Treg-targeted Nox2 deletion (Nox2fl/flFoxP3Cre+) was generated and transplanted with hearts from CB6F1 donors. As compared to littermate controls, Nox2fl/flFoxP3Cre+ mice had lower plasma levels of alloantibodies and troponin-I, reduced levels of IFN-γ in heart allograft homogenates and diminished cardiomyocyte necrosis and allograft fibrosis. Single cell analyses of allografts revealed higher absolute numbers of Tregs and lower CD8+ T cell infiltration in Nox2-deficient recipients compared to Nox2-replete mice. Mechanistically, in addition to a greater suppression of CD8+CD25- T effector cell proliferation and IFN-γ production, Nox2-deficient Tregs expressed higher levels of CCR4 and CCR8, driving cell migration to allografts; this was associated with increased expression of miR214-3p. These data indicate that Nox2 deletion in Tregs enhances their suppressive ability and migration to heart allografts. Therefore, Nox2 inhibition in Tregs may be a useful approach to improve their therapeutic efficacy.
Silvia C. Trevelin, Anna Zampetaki, Greta Sawyer, Aleksandar Ivetic, Alison C. Brewer, Lesley Ann Smyth, Federica Marelli-Berg, Robert Köchl, Robert I. Lechler, Ajay M. Shah, Giovanna Lombardi
Development of primary liver cancer is a multi-stage process. Detailed understanding of sequential epigenetic alterations is largely missing. Here, we performed Infinium Human Methylation 450k BeadChips and RNA sequencing analyses for genome-wide methylome and transcriptome profiling of cirrhotic liver (n=7), low- (n=4) and high-grade (n=9) dysplastic lesions, early (n=5) and progressed (n=3) hepatocellular carcinomas (HCC) synchronously detected in eight HCC patients with chronic hepatitis B infection. Integrative analyses of epigenetically driven molecular changes were identified and validated in two independent cohorts comprising 887 HCC. Mitochondrial DNA sequencing was further employed for clonality analyses and indicates multi-clonal origin in the majority of investigated HCC. Alterations in DNA methylation progressively increased from CL to dysplastic lesions and reached a maximum in early HCC. Associated early alterations identified by IPA pathway analyses involved apoptosis, immune regulation and stemness pathways, while late changes centered on cell survival, proliferation and invasion. We further validated putative 23 epi-drivers with concomitant expression changes and associated with overall survival. Functionally, Striatin 4 (STRN4) was demonstrated to be epigenetically regulated and inhibition of STRN4 significantly suppressed tumorigenicity of HCC cell lines. Overall, application of integrative genomic analyses defines epigenetic driver alterations and provides promising targets for novel therapeutic approaches.
Carolin Czauderna, Alicia Poplawski, Colm J. O´Rourke, Darko Castven, Benjamín Pérez-Aguilar, Diana Becker, Stefanie Heilmann-Heimbach, Margarete Odenthal, Wafa Amer, Marcel Schmiel, Uta Drebber, Harald Binder, Dirk A. Ridder, Mario Schindeldecker, Beate K. Straub, Peter R. Galle, Jesper B. Andersen, Snorri S. Thorgeirsson, Young Nyun Park, Jens U. Marquardt
No posts were found with this tag.