Effective SARS-CoV-2 vaccines are urgently needed. While most vaccine strategies have focused on systemic immunization, here we compared the protective efficacy of two adjuvanted subunit vaccines with spike protein S1: an intramuscular (IM)- primed /boosted vaccine and an IM-primed/intranasal (IN)-boosted mucosal vaccine, in rhesus macaques. The IM-alum-only vaccine induced robust binding and neutralizing antibody and persistent cellular immunity systemically and mucosally, while IN boosting with nanoparticles including IL-15 and TLR agonists elicited weaker T-cell and antibody responses, but higher dimeric IgA and IFNa. Nevertheless, following SARS-CoV-2 challenge, neither group showed detectable subgenomic RNA in upper or lower respiratory tracts vs naïve controls, indicating full protection against viral replication. Though mucosal and systemic protective mechanisms may differ, results demonstrate both vaccines can protect against respiratory SARS-CoV-2 exposure. The mucosal vaccine was safe after multiple doses and cleared the input virus more efficiently in the nasal cavity, and thus may act as a potent complementary reinforcing boost for conventional systemic vaccines to provide overall better protection.
Yongjun Sui, Jianping Li, Roushu Zhang, Sunaina Kiran Prabhu, Hanne Andersen Elyard, David Venzon, Anthony Cook, Renita Elizabeth Brown, Elyse Teow, Jason Velasco, Jack Greenhouse, Tammy Putmon-Taylor, Tracey-Ann V. Campbell, Laurent Pessaint, Ian N. Moore, Laurel A. Lagenaur, James D. Talton, Matthew W. Breed, Joshua Kramer, Kevin W. Bock, Mahnaz Minai, Bianca M. Nagata, Mark G. Lewis, Lai-Xi Wang, Jay A. Berzofsky
Emerging coronaviruses from zoonotic reservoirs including severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been associated with human-to-human transmission and significant morbidity and mortality. Here we study both intradermal (ID) and intramuscular (IM) two-dose delivery regimens of an advanced synthetic DNA vaccine candidate encoding a full-length MERS-CoV Spike (S) protein, which induced potent binding and neutralizing antibodies, as well as cellular immune responses in rhesus macaques. In a MERS-CoV challenge, all immunized rhesus macaques exhibited reduced clinical symptoms, lowered viral lung load, and decreased severity of pathological signs of disease compared to controls. ID vaccination was dose sparing and more effective in this model at protecting animals from disease. The data support the further study of this vaccine for preventing MERS-CoV infection and transmission, including investigation of such vaccines and simplified delivery routes against emerging coronaviruses.
Ami Patel, Emma L. Reuschel, Ziyang Xu, Faraz I. Zaidi, Kevin Y. Kim, Dana P. Scott, Janess Mendoza, Stephanie Ramos, Regina Stoltz, Friederike Feldmann, Atsushi Okumura, Kimberly Meade-White, Elaine Haddock, Tina Thomas, Rebecca Rosenke, Jamie Lovaglio, Patrick W. Hanley, Greg Saturday, Kar Muthumani, Heinz Feldmann, Laurent M. Humeau, Kate E. Broderick, David B. Weiner
The increased incidence of whooping cough worldwide suggests that current vaccination against Bordetella pertussis infection has limitations in quality and duration of protection. The resurgence of infection has been linked to the introduction of acellular vaccines (aP) which has an improved safety profile compared to the previously used whole-cell (wP) vaccines. To determine immunological differences between aP vs. wP priming in infancy, we performed a systems approach of the immune response to booster vaccination. Transcriptomic, proteomic, cytometric, and serologic profiling revealed multiple shared immune responses with different kinetics across cohorts, including an increase of blood monocyte frequencies, and strong antigen-specific IgG responses. Additionally, we found a prominent subset of aP-primed individuals (30%) with a strong differential signature, including higher levels of expression for CCL3, NFKBIA, and ICAM1. Contrary to the wP individuals, this subset displayed increased PT-specific IgE responses postboost and higher antigen-specific IgG4 and IgG3 antibodies against FHA and FIM2/3 at baseline and post-boost. Overall, the results show that, while broad immune response patterns to Tdap boost overlap between aP- and wP-primed individuals, a subset of aP-primed individuals present a divergent response. These findings provide candidate targets to study the causes and correlates of waning immunity after aP vaccination.
Ricardo da Silva Antunes, Ferran Soldevila, Mikhail Pomaznoy, Mariana Babor, Jason Bennett, Yuan Tian, Natalie N. Khalil, Yu Qian, Aishwarya Mandava, Richard H. Scheuermann, Mario Cortese, Bali Pulendran, Christopher D. Petro, Adrienne P. Gilkes, Lisa A. Purcell, Alessandro Sette, Bjoern Peters
Vaccine delivery technologies are mainly designed to minimally invasively deliver vaccines to target tissues with little or no adjuvant effects. This study presents a prototype laser-based powder delivery (LPD) with inherent adjuvant effects for more immunogenic vaccination without incorporation of external adjuvants. LPD takes advantage of aesthetic ablative fractional laser to generate skin microchannels to support high-efficient vaccine delivery and at the same time creates photothermal stress in microchannel-surrounding tissues to boost vaccination. LPD could significantly enhance pandemic influenza 2009 H1N1 vaccine immunogenicity and protective efficacy as compared to needle-based intradermal delivery in murine models. The ablative fractional laser was found to induce host DNA release, activate NLR family pyrin domain containing 3 (NLRP3) inflammasome, and stimulate interleukin 1β release despite of their dispensability for laser adjuvant effects. Instead, the ablative fractional laser activated MyD88 to mediate its adjuvant effects by potentiation of antigen uptake, maturation, and migration of dendritic cells. LPD also induced minimal local or systemic adverse reactions due to the micro-fractional and sustained vaccine delivery. Our data support the development of self-adjuvanted vaccine delivery technologies by intentional induction of well-controlled tissue stress to alert innate immune systems for more immunogenic vaccination.
Zhuofan Li, Yan Cao, Yibo Li, Yiwen Zhao, Xinyuan Chen
Influenza virus infections affect millions of people annually. Current available vaccines provide varying rates of protection. There is a knowledge gap on how the nasal microbiota, particularly established pneumococcal colonization, shapes the response to influenza vaccination. In this study, we inoculated healthy adults with live S. pneumoniae and vaccinated them three days later with either TIV or LAIV. Vaccine-induced immune responses were assessed in nose, blood and lung. Nasal pneumococcal colonization had no impact upon TIV-induced antibody responses to influenza, which manifested in all compartments. However, experimentally-induced pneumococcal colonization dampened LAIV-mediated mucosal antibody responses, primarily IgA in the nose and IgG in the lung. Pulmonary influenza-specific cellular responses were more apparent in the LAIV group compared to either TIV or an unvaccinated group. These results indicate that TIV and LAIV elicit differential immunity to adults and that LAIV immunogenicity is diminished by the nasal presence of S. pneumoniae. Therefore, nasopharyngeal pneumococcal colonization may affect LAIV efficacy.
Beatriz F. Carniel, Fernando Marcon, Jamie Rylance, Esther L. German, Seher Zaidi, Jesus Reine, Edessa Negera, Elissavet Nikolaou, Sherin Pojar, Carla Solórzano, Andrea M. Collins, Victoria Connor, Debby Bogaert, Stephen B. Gordon, Helder I. Nakaya, Daniela M. Ferreira, Simon P. Jochems, Elena Mitsi
Individuals younger than 6 months of age are at significant risk from influenza virus infection; however, there is currently no vaccine approved for this age group. Influenza virus neuraminidase (NA) has emerged as a potential additional target for vaccine strategies. In this study, we sought to understand the ability of newborns to mount an antibody response to NA. Here we employed a nonhuman primate model, given the similarities to humans in immune system and development. We measured antibody to NA following infection with an H1N1 virus or following vaccination and challenge. Administration of an inactivated virus vaccine was not capable of eliciting detectable NA-specific antibody, even in the presence of adjuvants previously shown to increase total virus-specific IgG. However, both naive and vaccinated newborns generated a NA-specific antibody response following virus infection. Interestingly, the presence of the vaccine-induced response did not prevent generation of systemic antibody to NA following challenge, although the respiratory response was reduced in a significant portion of newborns. These findings are the first, to our knowledge, to evaluate the newborn response to the influenza NA protein as well as the impact of previous vaccination on generation of these antibodies following virus infection.
Patrick K. Shultz, Kali F. Crofts, Beth C. Holbrook, Martha A. Alexander-Miller
Plasma antimalarial antibody can mediate anti-parasite immunity but has not previously been characterized at the molecular level. Here, we develop an innovative strategy to characterize humoral responses by integrating profiles of plasma immunoglobulins (IG) or antibodies with those expressed on B cells as part of BcR. We applied this strategy to define plasma IG and determine variable V gene usage after vaccination with the Plasmodium falciparum zygote antigen Pfs25. First, using proteomic tools coupled with bulk immunosequencing data, we determined human F(ab′)2 peptide sequences from plasma IG of adults who received four doses of Pfs25-EPA/Alhydrogel. Specifically, Pfs25 antigen-specific F(ab′)2 peptides (Pfs25-IG) were aligned to cDNA sequences of IGH complementarity determining region 3 (CDR3) from a dataset generated by total peripheral B cell immunosequencing of the entire vaccinated population. IGHV4 was the most commonly identified IGHV subgroup of Pfs25-IG, a pattern that was corroborated by VH/VL sequencing of Pfs25-specific single B cells from five vaccinees and by matching plasma Pfs25-IG peptides and V-(D)-J sequences of Pfs25-specific single B cells from the same donor. Among 13 recombinant human mAbs generated from IG sequences of Pfs25-specific single B cells, a single IGHV4 mAb displayed strong neutralizing activity, reducing the number of P. falciparum oocysts in infected mosquitoes by more than 80% at 100 μg/mL. Our approach characterizes the human plasma antibody repertoire in response to the Pfs25-EPA/Alhydrogel vaccine and will be useful to study circulating antibodies in response to other vaccines as well as those induced during infections or autoimmune disorders.
Camila H. Coelho, Steven T. Nadakal, Patricia A. Gonzales Hurtado, Robert Morrison, Jacob D. Galson, Jillian Neal, Yimin Wu, C. Richter King, Virginia Price, Kazutoyo Miura, Sharon Wong-Madden, Justin Y.A. Dortichamou, David L. Narum, Nicholas J. MacDonald, Maryonne Snow-Smith, Marissa Vignali, Justin J. Taylor, Marie-Paule Lefranc, Johannes Trück, Carole A. Long, Issaka Sagara, Michal Fried, Patrick E. Duffy
While the RV144 HIV vaccine trial lead to moderately reduced risk of HIV acquisition, emerging data from the repeat failure of the HVTN702 trial point to the critical need to re-examine the relationships between previously identified correlates of reduced risk of protection in the RV144 study. Specifically, the induction of V2-binding, non-IgA, IgG3 antibody responses with non-neutralizing functions were linked to reduced risk of infection in RV144 vaccinees. While each of these features was individually linked to reduced risk of infection, the relationships and interactions between these humoral immune signatures remain unclear. Thus, here we comprehensively profiled the humoral immune response in 300 RV144 vaccinees to specifically decipher the relationships between humoral biomarkers of protection and susceptibility. Here, we found that vaccine-specific IgG1, IgG3, and IgA were highly correlated. However, ratios of IgG1:IgG3:IgA provided new insights into subclass/isotype polyclonal functional regulation. For instance, in the absence of high IgG1 levels, IgG3 antibodies exhibited limited functional activity, pointing to IgG3 as a critical contributor, but not sole driver, of more effective antiviral humoral immunity. Moreover, in contrast to previous findings, higher IgA levels were linked to enhanced antibody effector function, including neutrophil phagocytosis (ADNP), complement deposition (ADCD) and NK degranulation (CD107a). Several IgA-associated functions were increased in infected vaccinees in a case:control dataset, suggesting that rather than blocking, IgA may have driven deleterious functions, thereby compromising immunity. These data highlight the interplay between IgG1, IgG3 and IgA, pointing to the critical need to deeply profile the relationships between subclass/isotype selection.
Stephanie Fischinger, Sepideh Dolatshahi, Madeleine F. Jennewein, Supachai Rerks-Ngarm, Punnee Pitisuttithum, Sorachai Nitayaphan, Nelson L. Michael, Sandhya Vasan, Margaret E Ackerman, Hendrik Streeck, Galit Alter
Whole sporozoite vaccines engender sterilizing immunity against malaria in animal models and importantly, in humans. Gene editing allows for the removal of specific parasite genes, enabling generation of genetically attenuated parasite (GAP) strains for vaccination. Using rodent malaria parasites, we have previously shown that late liver stage-arresting replication-competent (LARC) GAPs confer superior protection when compared to early liver stage-arresting replication-deficient (EARD) GAPs and radiation-attenuated sporozoites. However, generating a LARC GAP in the human malaria parasite Plasmodium falciparum (Pf) has been challenging. Here we report the generation and characterization of an unprecedented Pf LARC GAP generated by targeted gene deletion of the Mei2 gene; Pf mei2–. Robust exoerythrocytic schizogony with extensive cell growth and DNA replication was observed for Pf mei2- liver stages in human liver-chimeric mice. However, Pf mei2– liver stages failed to complete development and did not form infectious exo-erythrocytic merozoites, thereby preventing their transition to asexual blood stage infection. Therefore, Pf mei2– is a replication-competent, attenuated human malaria parasite strain with potentially increased potency, useful for vaccination to protect against Pf malaria infection.
Debashree Goswami, William Betz, Navin K. Locham, Chaitra Parthiban, Carolyn Brager, Carola Schäfer, Nelly Camargo, Thao Nguyen, Spencer Y. Kennedy, Sean C. Murphy, Ashley M. Vaughan, Stefan H.I. Kappe
Background: HVTN 098, a randomized, double-blind, placebo-controlled trial, evaluated the safety, tolerability and immunogenicity of PENNVAX®-GP HIV DNA vaccine, administered with or without plasmid IL-12 (pIL-12), via intradermal (ID) or intramuscular (IM) electroporation (EP) in healthy, HIV-uninfected adults. The study tested whether PENNVAX®-GP delivered via ID/EP at 1/5th the dose could elicit equivalent immune responses to delivery via IM/EP, and if inclusion of pIL-12 provided additional benefit. Methods: Participants received DNA encoding HIV-1 env/gag/pol in three groups: 1.6mg ID (ID no IL-12 group, n=20), 1.6mg ID + 0.4mg pIL-12 (ID+IL-12 group, n=30), 8mg IM + 1mg pIL-12 (IM+IL-12 group, n=30) or placebo (n=9) via EP at 0, 1, 3 and 6 months. Results of cellular and humoral immunogencity assessments are reported. Results: Following vaccination, the frequency of responders (response rate) to any HIV protein based on CD4+ T-cells expressing IFN-γ and/or IL-2 was 96% for both the ID+IL-12 and IM+IL-12 groups; CD8+ T-cell response rates were 64% and 44%, respectively. For ID delivery, the inclusion of pIL-12 increased CD4+ T-cell response rate from 56% to 96%. The frequency of responders was similar (>90%) for IgG binding Ab to gp140 consensus Env across all groups, but the magnitude was higher in the ID+IL-12 group compared to the IM+IL-12 group. Conclusion: PENNVAX®-GP DNA induced robust cellular and humoral immune responses, demonstrating that immunogenicity of DNA vaccines can be enhanced by EP route and inclusion of pIL-12. ID/EP was dose-sparing, inducing equivalent, or in some aspects superior, immune responses compared to IM/EP. Trial registration: ClinicalTrials.gov NCT02431767 Funding: This work was supported by the National Institute of Allergy and Infectious Diseases (NIAID, https://www.niaid.nih.gov/) U.S. Public Health Service Grants UM1 AI068618 [LC: HIV 75 Vaccine Trials Network], UM1 AI068614 [LOC: HIV Vaccine Trials Network], UM1 AI068635 76 [SDMC: HIV Vaccine Trials Network], , U01 AI069418-ˇ08 [Emory-ˇCDC Clinical Trials Unit], UM AI069511 [University of Rochester HIV/AIDS Clinical Trials Unit], UM1 AI069439 77 [Vanderbilt Clinical Trial Unit], UM1 AI069481 [Seattle-ˇLausanne Clinical Trials Unit] and HVDDT Contract HHSN2722008000063C (Inovio Pharmaceuticals). This work was also supported, in part, by IPCAVD award U19 AI09646-ˇ03 (DBW) and NIH award P01 AI120756 (GDT). The opinions expressed in this article are those of the authors and do not necessarily represent the official views of the NIAID or the National Institutes of Health (NIH).
Stephen DeRosa, Srilatha Edupuganti, Yunda Huang, Xue Han, Marnie Elizaga, Edith Swann, Laura Polakowski, Spyros A. Kalams, Michael C. Keefer, Janine Maenza, Yiwen Lu, Megan C. Wise, Jian Yan, Matthew P. Morrow, Amir S. Khan, Jean Boyer, Laurent M. Humeau, Scott White, Michael N. Pensiero, Niranjan Y. Sardesai, Mark Bagarazzi, David B. Weiner, Guido Ferrari, Georgia Tomaras, David Montefiori, Lawrence Corey, M. Juliana McElrath
No posts were found with this tag.