Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Resource and Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact

Transplantation

  • 106 Articles
  • 0 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 8
  • 9
  • 10
  • 11
  • Next →
Longitudinal immunological characterization of the first presensitized recipient of a face transplant
Thet Su Win, … , Rachael A. Clark, Leonardo V. Riella
Thet Su Win, … , Rachael A. Clark, Leonardo V. Riella
Published July 6, 2017
Citation Information: JCI Insight. 2017;2(13):e93894. https://doi.org/10.1172/jci.insight.93894.
View: Text | PDF

Longitudinal immunological characterization of the first presensitized recipient of a face transplant

  • Text
  • PDF
Abstract

Rejection affects greater than 80% of face transplants, yet no diagnostic criteria for antibody-mediated rejection (AMR) following face transplantation have been established. Given that different treatment strategies are required to address AMR and T cell–mediated rejection (TCMR), there is a critical need to delineate the features that can differentiate these two alloimmune responses. Here, we report the longitudinal immunological examination of what we believe to be the first and only highly sensitized recipient of a crossmatch-positive face transplant up to 4 years following transplantation. We conducted gene expression profiling on allograft biopsies collected during suspected AMR and TCMR episodes as well as during 5 nonrejection time points. Our data suggest that there are distinctive molecular features in AMR, characterized by overexpression of endothelial-associated genes, including ICAM1, VCAM1, and SELE. Although our findings are limited to a single patient, these findings highlight the potential importance of developing and implementing molecular markers to differentiate AMR from TCMR to guide clinical management. Furthermore, our case illustrates that molecular assessment of allograft biopsies offers the potential for new insights into the mechanisms underlying rejection. Finally, our medium-term outcomes demonstrate that face transplantation in a highly sensitized patient with a positive preoperative crossmatch is feasible and manageable.

Authors

Thet Su Win, Naoka Murakami, Thiago J. Borges, Anil Chandraker, George Murphy, Christine Lian, Victor Barrera, Shannan Ho Sui, David Schoenfeld, Jessica Teague, Ericka Bueno, Stefan G. Tullius, Bohdan Pomahac, Rachael A. Clark, Leonardo V. Riella

×

CD4+ T lymphocytes produce adiponectin in response to transplants
Sreedevi Danturti, … , Robert L. Fairchild, William M. Baldwin III
Sreedevi Danturti, … , Robert L. Fairchild, William M. Baldwin III
Published June 15, 2017
Citation Information: JCI Insight. 2017;2(12):e89641. https://doi.org/10.1172/jci.insight.89641.
View: Text | PDF

CD4+ T lymphocytes produce adiponectin in response to transplants

  • Text
  • PDF
Abstract

Adiponectin is a pleiotropic cytokine with diverse immunomodulatory effects on macrophages and lymphocytes. In the current paradigm, lymphocytes and macrophages respond to adiponectin that is produced by adipocytes and other parenchymal cells. Using a model of chronic arterial inflammation in cardiac transplants, we found that T cells derived from the recipient migrate to the heart and produce adiponectin locally. The evidence that T cells produce significant amounts of adiponectin is based on 3 experimental approaches. First, CD4+ T cells isolated from the blood and spleen after cardiac transplantation express mRNA for adiponectin. Second, reconstitution of T cell–deficient recipients with transgenic CD4+ T cells that express receptors for donor antigens results in arterial infiltrates containing T cells and increased mRNA expression for adiponectin in cardiac transplants. Third, CD4+ T cells isolated from the allograft secrete adiponectin in vitro. Taken together, these data indicate that adiponectin-competent cells originating in the recipient migrate into the transplant. Establishing T cells as a source of adiponectin provides a new dimension, to our knowledge, to the modulatory effects of adiponectin on immune responses.

Authors

Sreedevi Danturti, Karen S. Keslar, Leah R. Steinhoff, Ran Fan, Nina Dvorina, Anna Valujskikh, Robert L. Fairchild, William M. Baldwin III

×

An activated Th17-prone T cell subset involved in chronic graft-versus-host disease sensitive to pharmacological inhibition
Edouard Forcade, … , Sophie Paczesny, Bruce R. Blazar
Edouard Forcade, … , Sophie Paczesny, Bruce R. Blazar
Published June 15, 2017
Citation Information: JCI Insight. 2017;2(12):e92111. https://doi.org/10.1172/jci.insight.92111.
View: Text | PDF

An activated Th17-prone T cell subset involved in chronic graft-versus-host disease sensitive to pharmacological inhibition

  • Text
  • PDF
Abstract

Chronic graft-versus-host disease (cGvHD) remains a major complication of allogeneic stem cell transplantation requiring novel therapies. CD146 and CCR5 are expressed by activated T cells and associated with increased T cell migration capacity and Th17 polarization. We performed a multiparametric flow cytometry analysis in a cohort of 40 HSCT patients together with a cGvHD murine model to understand the role of CD146-expressing subsets. We observed an increased frequency of CD146+ CD4 T cells in the 20 patients with active cGvHD with enhanced RORγt expression. This Th17-prone subset was enriched for cells coexpressing CD146 and CCR5 that harbor mixed Th1/Th17 features and were more frequent in cGvHD patients. Utilizing a murine cGvHD model with bronchiolitis obliterans (BO), we observed that donor T cells from CD146-deficient mice versus those from WT mice caused significantly reduced pulmonary cGvHD. Reduced cGvHD was not the result of failed germinal center B cell or T follicular helper cell generation. Instead, CD146-deficient T cells had significantly lower pulmonary macrophage infiltration and T cell CCR5, IL-17, and IFN-γ coexpression, suggesting defective pulmonary end-organ effector mechanisms. We, thus, evaluated the effect of TMP778, a small-molecule RORγt activity inhibitor. TMP778 markedly alleviated cGvHD in murine models similarly to agents targeting the Th17 pathway, such as STAT3 inhibitor or IL-17–blocking antibody. Our data suggest CD146-expressing T cells as a cGvHD biomarker and suggest that targeting the Th17 pathway may represent a promising therapy for cGvHD.

Authors

Edouard Forcade, Katelyn Paz, Ryan Flynn, Brad Griesenauer, Tohti Amet, Wei Li, Liangyi Liu, Giorgos Bakoyannis, Di Jiang, Hong Wei Chu, Mercedes Lobera, Jianfei Yang, David S. Wilkes, Jing Du, Kate Gartlan, Geoffrey R. Hill, Kelli P.A. MacDonald, Eduardo L. Espada, Patrick Blanco, Jonathan S. Serody, John Koreth, Corey S. Cutler, Joseph H. Antin, Robert J. Soiffer, Jerome Ritz, Sophie Paczesny, Bruce R. Blazar

×

In vivo kinetics and nonradioactive imaging of rapidly proliferating cells in graft-versus-host disease
Nataliya P. Buxbaum, … , Remy J. Bosselut, Ronald E. Gress
Nataliya P. Buxbaum, … , Remy J. Bosselut, Ronald E. Gress
Published June 15, 2017
Citation Information: JCI Insight. 2017;2(12):e92851. https://doi.org/10.1172/jci.insight.92851.
View: Text | PDF

In vivo kinetics and nonradioactive imaging of rapidly proliferating cells in graft-versus-host disease

  • Text
  • PDF
Abstract

Hematopoietic stem cell transplantation (HSCT) offers a cure for cancers that are refractory to chemotherapy and radiation. Most HSCT recipients develop chronic graft-versus-host disease (cGVHD), a systemic alloimmune attack on host organs. Diagnosis is based on clinical signs and symptoms, as biopsies are risky. T cells are central to the biology of cGVHD. We found that a low Treg/CD4+ T effector memory (Tem) ratio in circulation, lymphoid, and target organs identified early and established mouse cGVHD. Using deuterated water labeling to measure multicompartment in vivo kinetics of these subsets, we show robust Tem and Treg proliferation in lymphoid and target organs, while Tregs undergo apoptosis in target organs. Since deuterium enrichment into DNA serves as a proxy for cell proliferation, we developed a whole-body clinically relevant deuterium MRI approach to nonradioactively detect cGVHD and potentially allow imaging of other diseases characterized by rapidly proliferating cells.

Authors

Nataliya P. Buxbaum, Donald E. Farthing, Natella Maglakelidze, Martin Lizak, Hellmut Merkle, Andrea C. Carpenter, Brittany U. Oliver, Veena Kapoor, Ehydel Castro, Gregory A. Swan, Liliane M. dos Santos, Nicolas J. Bouladoux, Catherine V. Bare, Francis A. Flomerfelt, Michael A. Eckhaus, William G. Telford, Yasmine Belkaid, Remy J. Bosselut, Ronald E. Gress

×

Assessing rejection-related disease in kidney transplant biopsies based on archetypal analysis of molecular phenotypes
Jeff Reeve, … , Philip F. Halloran, the MMDx-Kidney study group
Jeff Reeve, … , Philip F. Halloran, the MMDx-Kidney study group
Published June 15, 2017
Citation Information: JCI Insight. 2017;2(12):e94197. https://doi.org/10.1172/jci.insight.94197.
View: Text | PDF

Assessing rejection-related disease in kidney transplant biopsies based on archetypal analysis of molecular phenotypes

  • Text
  • PDF
Abstract

Conventional histologic diagnosis of rejection in kidney transplants has limited repeatability due to its inherent requirement for subjective assessment of lesions, in a rule-based system that does not acknowledge diagnostic uncertainty. Molecular phenotyping affords opportunities for increased precision and improved disease classification to address the limitations of conventional histologic diagnostic systems and quantify levels of uncertainty. Microarray data from 1,208 kidney transplant biopsies were collected prospectively from 13 centers. Cross-validated classifier scores predicting the presence of antibody-mediated rejection (ABMR), T cell–mediated rejection (TCMR), and 5 related histologic lesions were generated using supervised machine learning methods. These scores were used as input for archetypal analysis, an unsupervised method similar to cluster analysis, to examine the distribution of molecular phenotypes related to rejection. Six archetypes were generated: no rejection, TCMR, 3 associated with ABMR (early-stage, fully developed, and late-stage), and mixed rejection (TCMR plus early-stage ABMR). Each biopsy was assigned 6 scores, one for each archetype, representing a probabilistic assessment of that biopsy based on its rejection-related molecular properties. Viewed as clusters, the archetypes were similar to existing histologic Banff categories, but there was 32% disagreement, much of it probably reflecting the “noise” in the current histologic assessment system. Graft survival was lowest for fully developed and late-stage ABMR, and it was better predicted by molecular archetype scores than histologic diagnoses. The results provide a system for precision molecular assessment of biopsies and a new standard for recalibrating conventional diagnostic systems.

Authors

Jeff Reeve, Georg A. Böhmig, Farsad Eskandary, Gunilla Einecke, Carmen Lefaucheur, Alexandre Loupy, Philip F. Halloran, the MMDx-Kidney study group

×

T cell progenitor therapy–facilitated thymopoiesis depends upon thymic input and continued thymic microenvironment interaction
Michelle J. Smith, … , Jakub Tolar, Bruce R. Blazar
Michelle J. Smith, … , Jakub Tolar, Bruce R. Blazar
Published May 18, 2017
Citation Information: JCI Insight. 2017;2(10):e92056. https://doi.org/10.1172/jci.insight.92056.
View: Text | PDF

T cell progenitor therapy–facilitated thymopoiesis depends upon thymic input and continued thymic microenvironment interaction

  • Text
  • PDF
Abstract

Infusion of in vitro–derived T cell progenitor (proT) therapy with hematopoietic stem cell transplant aids the recovery of the thymus damaged by total body irradiation. To understand the interaction between proTs and the thymic microenvironment, WT mice were lethally irradiated and given T cell–deficient (Rag1-/-) marrow with WT in vitro–generated proTs, limiting mature T cell development to infused proTs. ProTs within the host thymus led to a significant increase in thymic epithelial cells (TECs) by day 21 after transplant, increasing actively cycling TECs. Upon thymus egress (day 28), proT TEC effects were lost, suggesting that continued signaling from proTs is required to sustain TEC cycling and cellularity. Thymocytes increased significantly by day 21, followed by a significant improvement in mature T cell numbers in the periphery by day 35. This protective surge was temporary, receding by day 60. Double-negative 2 (DN2) proTs selectively increased thymocyte number, while DN3 proTs preferentially increased TECs and T cells in the spleen that persisted at day 60. These findings highlight the importance of the interaction between proTs and TECs in the proliferation and survival of TECs and that the maturation stage of proTs has unique effects on thymopoiesis and peripheral T cell recovery.

Authors

Michelle J. Smith, Dawn K. Reichenbach, Sarah L. Parker, Megan J. Riddle, Jason Mitchell, Kevin C. Osum, Mahmood Mohtashami, Heather E. Stefanski, Brian T. Fife, Avinash Bhandoola, Kristin A. Hogquist, Georg A. Holländer, Juan Carlos Zúñiga-Pflücker, Jakub Tolar, Bruce R. Blazar

×

Ceramide synthesis regulates T cell activity and GVHD development
M. Hanief Sofi, … , Besim Ogretmen, Xue-Zhong Yu
M. Hanief Sofi, … , Besim Ogretmen, Xue-Zhong Yu
Published May 18, 2017
Citation Information: JCI Insight. 2017;2(10):e91701. https://doi.org/10.1172/jci.insight.91701.
View: Text | PDF

Ceramide synthesis regulates T cell activity and GVHD development

  • Text
  • PDF
Abstract

Allogeneic hematopoietic cell transplantation (allo-HCT) is an effective immunotherapy for a variety of hematologic malignances, yet its efficacy is impeded by the development of graft-versus-host disease (GVHD). GVHD is characterized by activation, expansion, cytokine production, and migration of alloreactive donor T cells. Hence, strategies to limit GVHD are highly desirable. Ceramides are known to contribute to inflammation and autoimmunity. However, their involvement in T-cell responses to alloantigens is undefined. In the current study, we specifically characterized the role of ceramide synthase 6 (CerS6) after allo-HCT using genetic and pharmacologic approaches. We found that CerS6 was required for optimal T cell activation, proliferation, and cytokine production in response to alloantigen and for subsequent induction of GVHD. However, CerS6 was partially dispensable for the T cell–mediated antileukemia effect. At the molecular level, CerS6 was required for efficient TCR signal transduction, including tyrosine phosphorylation, ZAP-70 activation, and PKCθ/TCR colocalization. Impaired generation of C16-ceramide was responsible for diminished allogeneic T cell responses. Furthermore, targeting CerS6 using a specific inhibitor significantly reduced T cell activation in mouse and human T cells in vitro. Our study provides a rationale for targeting CerS6 to control GVHD, which would enhance the efficacy of allo-HCT as an immunotherapy for hematologic malignancies in the clinic.

Authors

M. Hanief Sofi, Jessica Heinrichs, Mohammed Dany, Hung Nguyen, Min Dai, David Bastian, Steven Schutt, Yongxia Wu, Anusara Daenthanasanmak, Salih Gencer, Aleksandra Zivkovic, Zdzislaw Szulc, Holger Stark, Chen Liu, Ying-Jun Chang, Besim Ogretmen, Xue-Zhong Yu

×

CTLA4-Ig in combination with FTY720 promotes allograft survival in sensitized recipients
Stella H. Khiew, … , Maria-Luisa Alegre, Anita S. Chong
Stella H. Khiew, … , Maria-Luisa Alegre, Anita S. Chong
Published May 4, 2017
Citation Information: JCI Insight. 2017;2(9):e92033. https://doi.org/10.1172/jci.insight.92033.
View: Text | PDF

CTLA4-Ig in combination with FTY720 promotes allograft survival in sensitized recipients

  • Text
  • PDF
Abstract

Despite recent evidence of improved graft outcomes and safety, the high incidence of early acute cellular rejection with belatacept, a high-affinity CTLA4-Ig, has limited its use in clinical transplantation. Here we define how the incomplete control of endogenous donor-reactive memory T cells results in belatacept-resistant rejection in an experimental model of BALB/c.2W-OVA donor heart transplantation into C57BL/6 recipients presensitized to donor splenocytes. These sensitized mice harbored modestly elevated numbers of endogenous donor-specific memory T cells and alloantibodies compared with naive recipients. Continuous CTLA4-Ig treatment was unexpectedly efficacious at inhibiting endogenous graft-reactive T cell expansion but was unable to inhibit late CD4+ and CD8+ T cell infiltration into the allografts, and rejection was observed in 50% of recipients by day 35 after transplantation. When CTLA4-Ig was combined with the sphingosine 1-phosphate receptor-1 (S1PR1) functional antagonist FTY720, alloantibody production was inhibited and donor-specific IFN-γ–producing T cells were reduced to levels approaching nonsensitized tolerant recipients. Late T cell recruitment into the graft was also restrained, and graft survival improved with this combination therapy. These observations suggest that a rational strategy consisting of inhibiting memory T cell expansion and trafficking into the allograft with CTLA4-Ig and FTY720 can promote allograft survival in allosensitized recipients.

Authors

Stella H. Khiew, Jinghui Yang, James S. Young, Jianjun Chen, Qiang Wang, Dengping Yin, Vinh Vu, Michelle L. Miller, Roger Sciammas, Maria-Luisa Alegre, Anita S. Chong

×

Models of Lung Transplant Research: a consensus statement from the National Heart, Lung, and Blood Institute workshop
Vibha N. Lama, … , Jerry P. Eu, Mark R. Nicolls
Vibha N. Lama, … , Jerry P. Eu, Mark R. Nicolls
Published May 4, 2017
Citation Information: JCI Insight. 2017;2(9):e93121. https://doi.org/10.1172/jci.insight.93121.
View: Text | PDF

Models of Lung Transplant Research: a consensus statement from the National Heart, Lung, and Blood Institute workshop

  • Text
  • PDF
Abstract

Lung transplantation, a cure for a number of end-stage lung diseases, continues to have the worst long-term outcomes when compared with other solid organ transplants. Preclinical modeling of the most common and serious lung transplantation complications are essential to better understand and mitigate the pathophysiological processes that lead to these complications. Various animal and in vitro models of lung transplant complications now exist and each of these models has unique strengths. However, significant issues, such as the required technical expertise as well as the robustness and clinical usefulness of these models, remain to be overcome or clarified. The National Heart, Lung, and Blood Institute (NHLBI) convened a workshop in March 2016 to review the state of preclinical science addressing the three most important complications of lung transplantation: primary graft dysfunction (PGD), acute rejection (AR), and chronic lung allograft dysfunction (CLAD). In addition, the participants of the workshop were tasked to make consensus recommendations on the best use of these complimentary models to close our knowledge gaps in PGD, AR, and CLAD. Their reviews and recommendations are summarized in this report. Furthermore, the participants outlined opportunities to collaborate and directions to accelerate research using these preclinical models.

Authors

Vibha N. Lama, John A. Belperio, Jason D. Christie, Souheil El-Chemaly, Michael C. Fishbein, Andrew E. Gelman, Wayne W. Hancock, Shaf Keshavjee, Daniel Kreisel, Victor E. Laubach, Mark R. Looney, John F. McDyer, Thalachallour Mohanakumar, Rebecca A. Shilling, Angela Panoskaltsis-Mortari, David S. Wilkes, Jerry P. Eu, Mark R. Nicolls

×

Serum Gp96 is a chaperone of complement-C3 during graft-versus-host disease
Antoine Seignez, … , Evelyne Kohli, Carmen Garrido
Antoine Seignez, … , Evelyne Kohli, Carmen Garrido
Published March 23, 2017
Citation Information: JCI Insight. 2017;2(6):e90531. https://doi.org/10.1172/jci.insight.90531.
View: Text | PDF

Serum Gp96 is a chaperone of complement-C3 during graft-versus-host disease

  • Text
  • PDF
Abstract

Better identification of severe acute graft-versus-host disease (GvHD) may improve the outcome of this life-threatening complication of allogeneic hematopoietic stem cell transplantation. GvHD induces tissue damage and the release of damage-associated molecular pattern (DAMP) molecules. Here, we analyzed GvHD patients (n = 39) to show that serum heat shock protein glycoprotein 96 (Gp96) could be such a DAMP molecule. We demonstrate that serum Gp96 increases in gastrointestinal GvHD patients and its level correlates with disease severity. An increase in Gp96 serum level was also observed in a mouse model of acute GvHD. This model was used to identify complement C3 as a main partner of Gp96 in the serum. Our biolayer interferometry, yeast two-hybrid and in silico modeling data allowed us to determine that Gp96 binds to a complement C3 fragment encompassing amino acids 749–954, a functional complement C3 hot spot important for binding of different regulators. Accordingly, in vitro experiments with purified proteins demonstrate that Gp96 downregulates several complement C3 functions. Finally, experimental induction of GvHD in complement C3–deficient mice confirms the link between Gp96 and complement C3 in the serum and with the severity of the disease.

Authors

Antoine Seignez, Anne-Laure Joly, Killian Chaumonnot, Adonis Hazoumé, Michel Sanka, Guillaume Marcion, Christophe Boudesco, Arlette Hammann, Renaud Seigneuric, Gaetan Jégo, Patrick Ducoroy, Patrice Delarue, Patrick Senet, Cristina Castilla-Llorente, Eric Solary, Marie-Agnès Durey, Marie-Thérèse Rubio, Olivier Hermine, Evelyne Kohli, Carmen Garrido

×
  • ← Previous
  • 1
  • 2
  • …
  • 8
  • 9
  • 10
  • 11
  • Next →

No posts were found with this tag.

Advertisement

Copyright © 2022 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts