Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Transplantation

  • 142 Articles
  • 0 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 9
  • 10
  • 11
  • …
  • 14
  • 15
  • Next →
Complement C3a and C5a receptors promote GVHD by suppressing mitophagy in recipient dendritic cells
Hung Nguyen, Sandeepkumar Kuril, David Bastian, Jisun Kim, Mengmeng Zhang, Silvia G. Vaena, Mohammed Dany, Min Dai, Jessica Lauren Heinrichs, Anusara Daenthanasanmak, Supinya Iamsawat, Steven Schutt, Jianing Fu, Yongxia Wu, David P. Fairlie, Carl Atkinson, Besim Ogretmen, Stephen Tomlinson, Xue-Zhong Yu
Hung Nguyen, Sandeepkumar Kuril, David Bastian, Jisun Kim, Mengmeng Zhang, Silvia G. Vaena, Mohammed Dany, Min Dai, Jessica Lauren Heinrichs, Anusara Daenthanasanmak, Supinya Iamsawat, Steven Schutt, Jianing Fu, Yongxia Wu, David P. Fairlie, Carl Atkinson, Besim Ogretmen, Stephen Tomlinson, Xue-Zhong Yu
View: Text | PDF

Complement C3a and C5a receptors promote GVHD by suppressing mitophagy in recipient dendritic cells

  • Text
  • PDF
Abstract

Graft-versus-host disease (GVHD) is a major complication of allogeneic hematopoietic cell transplantation (HCT). DCs play critical roles in GVHD induction. Modulating autophagy represents a promising therapeutic strategy for the treatment of immunological diseases. Complement receptors C3aR/C5aR expressed on DCs regulate immune responses by translating extracellular signals into intracellular activity. In the current study, we found that C3aR/C5aR deficiency enhanced ceramide-dependent lethal mitophagy (CDLM) in DCs. Cotransfer of host-type C3aR–/–/C5aR–/– DCs in the recipients significantly improved GVHD outcome after allogeneic HCT, primarily through enhancing CDLM in DCs. C3aR/C5aR deficiency in the host hematopoietic compartment significantly reduced GVHD severity via impairing Th1 differentiation and donor T cell glycolytic activity while enhancing Treg generation. Prophylactic treatment with C3aR/C5aR antagonists effectively alleviated GVHD while maintaining the graft-versus-leukemia (GVL) effect. Altogether, we demonstrate that inhibiting C3aR/C5aR induces lethal mitophagy in DCs, which represents a potential therapeutic approach to control GVHD while preserving the GVL effect.

Authors

Hung Nguyen, Sandeepkumar Kuril, David Bastian, Jisun Kim, Mengmeng Zhang, Silvia G. Vaena, Mohammed Dany, Min Dai, Jessica Lauren Heinrichs, Anusara Daenthanasanmak, Supinya Iamsawat, Steven Schutt, Jianing Fu, Yongxia Wu, David P. Fairlie, Carl Atkinson, Besim Ogretmen, Stephen Tomlinson, Xue-Zhong Yu

×

A standardized immune phenotyping and automated data analysis platform for multicenter biomarker studies
Sabine Ivison, Mehrnoush Malek, Rosa V. Garcia, Raewyn Broady, Anne Halpin, Manon Richaud, Rollin F. Brant, Szu-I Wang, Mathieu Goupil, Qingdong Guan, Peter Ashton, Jason Warren, Amr Rajab, Simon Urschel, Deepali Kumar, Mathias Streitz, Birgit Sawitzki, Stephan Schlickeiser, Janetta J. Bijl, Donna A. Wall, Jean-Sebastien Delisle, Lori J. West, Ryan R. Brinkman, Megan K. Levings
Sabine Ivison, Mehrnoush Malek, Rosa V. Garcia, Raewyn Broady, Anne Halpin, Manon Richaud, Rollin F. Brant, Szu-I Wang, Mathieu Goupil, Qingdong Guan, Peter Ashton, Jason Warren, Amr Rajab, Simon Urschel, Deepali Kumar, Mathias Streitz, Birgit Sawitzki, Stephan Schlickeiser, Janetta J. Bijl, Donna A. Wall, Jean-Sebastien Delisle, Lori J. West, Ryan R. Brinkman, Megan K. Levings
View: Text | PDF

A standardized immune phenotyping and automated data analysis platform for multicenter biomarker studies

  • Text
  • PDF
Abstract

The analysis and validation of flow cytometry–based biomarkers in clinical studies are limited by the lack of standardized protocols that are reproducible across multiple centers and suitable for use with either unfractionated blood or cryopreserved PBMCs. Here we report the development of a platform that standardizes a set of flow cytometry panels across multiple centers, with high reproducibility in blood or PBMCs from either healthy subjects or patients 100 days after hematopoietic stem cell transplantation. Inter-center comparisons of replicate samples showed low variation, with interindividual variation exceeding inter-center variation for most populations (coefficients of variability <20% and interclass correlation coefficients >0.75). Exceptions included low-abundance populations defined by markers with indistinct expression boundaries (e.g., plasmablasts, monocyte subsets) or populations defined by markers sensitive to cryopreservation, such as CD62L and CD45RA. Automated gating pipelines were developed and validated on an independent data set, revealing high Spearman’s correlations (rs >0.9) with manual analyses. This workflow, which includes pre-formatted antibody cocktails, standardized protocols for acquisition, and validated automated analysis pipelines, can be readily implemented in multicenter clinical trials. This approach facilitates the collection of robust immune phenotyping data and comparison of data from independent studies.

Authors

Sabine Ivison, Mehrnoush Malek, Rosa V. Garcia, Raewyn Broady, Anne Halpin, Manon Richaud, Rollin F. Brant, Szu-I Wang, Mathieu Goupil, Qingdong Guan, Peter Ashton, Jason Warren, Amr Rajab, Simon Urschel, Deepali Kumar, Mathias Streitz, Birgit Sawitzki, Stephan Schlickeiser, Janetta J. Bijl, Donna A. Wall, Jean-Sebastien Delisle, Lori J. West, Ryan R. Brinkman, Megan K. Levings

×

Transcriptional trajectories of human kidney injury progression
Pietro E. Cippà, Bo Sun, Jing Liu, Liang Chen, Maarten Naesens, Andrew P. McMahon
Pietro E. Cippà, Bo Sun, Jing Liu, Liang Chen, Maarten Naesens, Andrew P. McMahon
View: Text | PDF

Transcriptional trajectories of human kidney injury progression

  • Text
  • PDF
Abstract

BACKGROUND. The molecular understanding of the progression from acute to chronic organ injury is limited. Ischemia/reperfusion injury (IRI) triggered during kidney transplantation can contribute to progressive allograft dysfunction. METHODS. Protocol biopsies (n = 163) were obtained from 42 kidney allografts at 4 time points after transplantation. RNA sequencing–mediated (RNA-seq–mediated) transcriptional profiling and machine learning computational approaches were employed to analyze the molecular responses to IRI and to identify shared and divergent transcriptional trajectories associated with distinct clinical outcomes. The data were compared with the response to IRI in a mouse model of the acute to chronic kidney injury transition. RESULTS. In the first hours after reperfusion, all patients exhibited a similar transcriptional program under the control of immediate-early response genes. In the following months, we identified 2 main transcriptional trajectories leading to kidney recovery or to sustained injury with associated fibrosis and renal dysfunction. The molecular map generated by this computational approach highlighted early markers of kidney disease progression and delineated transcriptional programs associated with the transition to chronic injury. The characterization of a similar process in a mouse IRI model extended the relevance of our findings beyond transplantation. CONCLUSIONS. The integration of multiple transcriptomes from serial biopsies with advanced computational algorithms overcame the analytical hurdles related to variability between individuals and identified shared transcriptional elements of kidney disease progression in humans, which may prove as useful predictors of disease progression following kidney transplantation and kidney injury. This generally applicable approach opens the way for an unbiased analysis of human disease progression. FUNDING. The study was supported by the California Institute for Regenerative Medicine and by the Swiss National Science Foundation.

Authors

Pietro E. Cippà, Bo Sun, Jing Liu, Liang Chen, Maarten Naesens, Andrew P. McMahon

×

Early expansion of donor-specific Tregs in tolerant kidney transplant recipients
Thomas M. Savage, Brittany A. Shonts, Aleksandar Obradovic, Susan Dewolf, Saiping Lau, Julien Zuber, Michael T. Simpson, Erik Berglund, Jianing Fu, Suxiao Yang, Siu-Hong Ho, Qizhi Tang, Laurence A. Turka, Yufeng Shen, Megan Sykes
Thomas M. Savage, Brittany A. Shonts, Aleksandar Obradovic, Susan Dewolf, Saiping Lau, Julien Zuber, Michael T. Simpson, Erik Berglund, Jianing Fu, Suxiao Yang, Siu-Hong Ho, Qizhi Tang, Laurence A. Turka, Yufeng Shen, Megan Sykes
View: Text | PDF

Early expansion of donor-specific Tregs in tolerant kidney transplant recipients

  • Text
  • PDF
Abstract

Allograft tolerance, in which a graft is accepted without long-term immunosuppression, could overcome numerous obstacles in transplantation. Human allograft tolerance has been intentionally induced across HLA barriers via combined kidney and bone marrow transplantation (CKBMT) with a regimen that induces only transient chimerism. Tregs are enriched early after CKBMT. While deletional tolerance contributes to long-term tolerance, the role of Tregs remains unclear. We have optimized a method for identifying the donor-specific Treg repertoire and used it to interrogate the fate of donor-specific Tregs after CKBMT. We expanded Tregs with several different protocols. Using functional analyses and T cell receptor sequencing, we found that expanding sorted Tregs with activated donor B cells identified the broadest Treg repertoire with the greatest potency and donor specificity of suppression. This method outperformed both alloantigen stimulation with CTLA4Ig and sequencing of CFSElo cells from the primary mixed lymphocyte reaction. In 3 tolerant and 1 nontolerant CKBMT recipients, we sequenced donor-specific Tregs before transplant and tracked them after transplant. Preexisting donor-specific Tregs were expanded at 6 months after CKBMT in tolerant patients and were reduced in the nontolerant patient. These results suggest that early expansion of donor-specific Tregs is involved in tolerance induction following CKBMT.

Authors

Thomas M. Savage, Brittany A. Shonts, Aleksandar Obradovic, Susan Dewolf, Saiping Lau, Julien Zuber, Michael T. Simpson, Erik Berglund, Jianing Fu, Suxiao Yang, Siu-Hong Ho, Qizhi Tang, Laurence A. Turka, Yufeng Shen, Megan Sykes

×

Exploring the cardiac response to injury in heart transplant biopsies
Philip F. Halloran, Jeff Reeve, Arezu Z. Aliabadi, Martin Cadeiras, Marisa G. Crespo-Leiro, Mario Deng, Eugene C. Depasquale, Johannes Goekler, Xavier Jouven, Daniel H. Kim, Jon Kobashigawa, Alexandre Loupy, Peter Macdonald, Luciano Potena, Andreas Zuckermann, Michael D. Parkes
Philip F. Halloran, Jeff Reeve, Arezu Z. Aliabadi, Martin Cadeiras, Marisa G. Crespo-Leiro, Mario Deng, Eugene C. Depasquale, Johannes Goekler, Xavier Jouven, Daniel H. Kim, Jon Kobashigawa, Alexandre Loupy, Peter Macdonald, Luciano Potena, Andreas Zuckermann, Michael D. Parkes
View: Text | PDF

Exploring the cardiac response to injury in heart transplant biopsies

  • Text
  • PDF
Abstract

BACKGROUND. Because injury is universal in organ transplantation, heart transplant endomyocardial biopsies present an opportunity to explore response to injury in heart parenchyma. Histology has limited ability to assess injury, potentially confusing it with rejection, whereas molecular changes have potential to distinguish injury from rejection. Building on previous studies of transcripts associated with T cell–mediated rejection (TCMR) and antibody-mediated rejection (ABMR), we explored transcripts reflecting injury. METHODS. Microarray data from 889 prospectively collected endomyocardial biopsies from 454 transplant recipients at 14 centers were subjected to unsupervised principal component analysis and archetypal analysis to detect variation not explained by rejection. The resulting principal component and archetype scores were then examined for their transcript, transcript set, and pathway associations and compared to the histology diagnoses and left ventricular function. RESULTS. Rejection was reflected by principal components PC1 and PC2, and by archetype scores S2TCMR, and S3ABMR, with S1normal indicating normalness. PC3 and a new archetype score, S4injury, identified unexplained variation correlating with expression of transcripts inducible in injury models, many expressed in macrophages and associated with inflammation in pathway analysis. S4injury scores were high in recent transplants, reflecting donation-implantation injury, and both S4injury and S2TCMR were associated with reduced left ventricular ejection fraction. CONCLUSION. Assessment of injury is necessary for accurate estimates of rejection and for understanding heart transplant phenotypes. Biopsies with molecular injury but no molecular rejection were often misdiagnosed rejection by histology. TRAIL REGISTRATION. ClinicalTrials.gov NCT02670408 FUNDING. Roche Organ Transplant Research Foundation, the University of Alberta Hospital Foundation, and Alberta Health Services.

Authors

Philip F. Halloran, Jeff Reeve, Arezu Z. Aliabadi, Martin Cadeiras, Marisa G. Crespo-Leiro, Mario Deng, Eugene C. Depasquale, Johannes Goekler, Xavier Jouven, Daniel H. Kim, Jon Kobashigawa, Alexandre Loupy, Peter Macdonald, Luciano Potena, Andreas Zuckermann, Michael D. Parkes

×

Superior immune reconstitution using Treg-expanded donor cells versus PTCy treatment in preclinical HSCT models
Dietlinde Wolf, Cameron S. Bader, Henry Barreras, Sabrina Copsel, Brent J. Pfeiffer, Casey O. Lightbourn, Norman H. Altman, Krishna V. Komanduri, Robert B. Levy
Dietlinde Wolf, Cameron S. Bader, Henry Barreras, Sabrina Copsel, Brent J. Pfeiffer, Casey O. Lightbourn, Norman H. Altman, Krishna V. Komanduri, Robert B. Levy
View: Text | PDF

Superior immune reconstitution using Treg-expanded donor cells versus PTCy treatment in preclinical HSCT models

  • Text
  • PDF
Abstract

Posttransplant cyclophosphamide (PTCy) has been found to be effective in ameliorating acute graft-versus-host disease (GVHD) in patients following allogeneic hematopoietic stem cell transplantation (aHSCT). Adoptive transfer of high numbers of donor Tregs in experimental aHSCT has shown promise as a therapeutic modality for GVHD regulation. We recently described a strategy for in vivo Treg expansion targeting two receptors: TNFRSF25 and CD25. To date, there have been no direct comparisons between the use of PTCy and Tregs regarding outcome and immune reconstitution within identical groups of transplanted mice. Here, we assessed these two strategies and found both decreased clinical GVHD and improved survival long term. However, recipients transplanted with Treg-expanded donor cells (TrED) exhibited less weight loss early after HSCT. Additionally, TrED recipients demonstrated less thymic damage, significantly more recent thymic emigrants, and more rapid lymphoid engraftment. Three months after HSCT, PTCy-treated and TrED recipients showed tolerance to F1 skin allografts and comparable immune function. Overall, TrED was found superior to PTCy with regard to weight loss early after transplant and initial lymphoid engraftment. Based on these findings, we speculate that morbidity and mortality after transplant could be diminished following TrED transplant into aHSCT recipients, and, therefore, that TrED could provide a promising clinical strategy for GVHD prophylaxis.

Authors

Dietlinde Wolf, Cameron S. Bader, Henry Barreras, Sabrina Copsel, Brent J. Pfeiffer, Casey O. Lightbourn, Norman H. Altman, Krishna V. Komanduri, Robert B. Levy

×

Gut microbiota–dependent modulation of innate immunity and lymph node remodeling affects cardiac allograft outcomes
Jonathan S. Bromberg, Lauren Hittle, Yanbao Xiong, Vikas Saxena, Eoghan M. Smyth, Lushen Li, Tianshu Zhang, Chelsea Wagner, W. Florian Fricke, Thomas Simon, Colin C. Brinkman, Emmanuel F. Mongodin
Jonathan S. Bromberg, Lauren Hittle, Yanbao Xiong, Vikas Saxena, Eoghan M. Smyth, Lushen Li, Tianshu Zhang, Chelsea Wagner, W. Florian Fricke, Thomas Simon, Colin C. Brinkman, Emmanuel F. Mongodin
View: Text | PDF | Corrigendum

Gut microbiota–dependent modulation of innate immunity and lymph node remodeling affects cardiac allograft outcomes

  • Text
  • PDF
Abstract

We hypothesized that the gut microbiota influences survival of murine cardiac allografts through modulation of immunity. Antibiotic pretreated mice received vascularized cardiac allografts and fecal microbiota transfer (FMT), along with tacrolimus immunosuppression. FMT source samples were from normal, pregnant (immune suppressed), or spontaneously colitic (inflammation) mice. Bifidobacterium pseudolongum (B. pseudolongum) in pregnant FMT recipients was associated with prolonged allograft survival and lower inflammation and fibrosis, while normal or colitic FMT resulted in inferior survival and worse histology. Transfer of B. pseudolongum alone resulted in reduced inflammation and fibrosis. Stimulation of DC and macrophage lines with B. pseudolongum induced the antiinflammatory cytokine IL-10 and homeostatic chemokine CCL19 but induced lesser amounts of the proinflammatory cytokines TNFα and IL-6. In contrast, LPS and Desulfovibrio desulfuricans (D. desulfuricans), more abundant in colitic FMT, induced a more inflammatory cytokine response. Analysis of mesenteric and peripheral lymph node structure showed that B. pseudolongum gavage resulted in a higher laminin α4/α5 ratio in the lymph node cortical ridge, indicative of a suppressive environment, while D. desulfuricans resulted in a lower laminin α4/α5 ratio, supportive of inflammation. Discrete gut bacterial species alter immunity and may predict graft outcomes through stimulation of myeloid cells and shifts in lymph node structure and permissiveness.

Authors

Jonathan S. Bromberg, Lauren Hittle, Yanbao Xiong, Vikas Saxena, Eoghan M. Smyth, Lushen Li, Tianshu Zhang, Chelsea Wagner, W. Florian Fricke, Thomas Simon, Colin C. Brinkman, Emmanuel F. Mongodin

×

SYK inhibitor entospletinib prevents ocular and skin GVHD in mice
Jonathan C. Poe, Wei Jia, Julie A. Di Paolo, Nancy J. Reyes, Ji Yun Kim, Hsuan Su, John S. Sundy, Adela R. Cardones, Victor L. Perez, Benny J. Chen, Nelson J. Chao, Diana M. Cardona, Daniel R. Saban, Stefanie Sarantopoulos
Jonathan C. Poe, Wei Jia, Julie A. Di Paolo, Nancy J. Reyes, Ji Yun Kim, Hsuan Su, John S. Sundy, Adela R. Cardones, Victor L. Perez, Benny J. Chen, Nelson J. Chao, Diana M. Cardona, Daniel R. Saban, Stefanie Sarantopoulos
View: Text | PDF

SYK inhibitor entospletinib prevents ocular and skin GVHD in mice

  • Text
  • PDF
Abstract

Graft-versus-host disease (GVHD) is a major complication of hematopoietic stem cell transplantation (HCT). The tyrosine kinase SYK contributes to both acute and chronic GVHD development, making it an attractive target for GVHD prevention. Entospletinib (ENTO) is a second-generation highly selective SYK inhibitor with a high safety profile. Potential utility of ENTO as GVHD prophylaxis in patients was examined using a preclinical mouse model of eye and skin GVHD and ENTO-compounded chow. We found that early SYK inhibition improved blood immune cell reconstitution in GVHD mice and prolonged survival, with 60% of mice surviving to day +120 compared with 10% of mice treated with placebo. Compared with mice receiving placebo, mice receiving ENTO had dramatic improvements in clinical eye scores, alopecia scores, and skin scores. Infiltrating SYK+ cells expressing B220 or F4/80, resembling SYK+ cells found in lichenoid skin lesions of chronic GVHD patients, were abundant in the skin of placebo mice but were rare in ENTO-treated mice. Thus, ENTO given early after HCT safely prevented GVHD.

Authors

Jonathan C. Poe, Wei Jia, Julie A. Di Paolo, Nancy J. Reyes, Ji Yun Kim, Hsuan Su, John S. Sundy, Adela R. Cardones, Victor L. Perez, Benny J. Chen, Nelson J. Chao, Diana M. Cardona, Daniel R. Saban, Stefanie Sarantopoulos

×

Ruxolitinib inhibits cyclosporine-induced proliferation of cutaneous squamous cell carcinoma
Melody Abikhair Burgo, Nazanin Roudiani, Jie Chen, Alexis L. Santana, Nicole Doudican, Charlotte Proby, Diane Felsen, John A. Carucci
Melody Abikhair Burgo, Nazanin Roudiani, Jie Chen, Alexis L. Santana, Nicole Doudican, Charlotte Proby, Diane Felsen, John A. Carucci
View: Text | PDF

Ruxolitinib inhibits cyclosporine-induced proliferation of cutaneous squamous cell carcinoma

  • Text
  • PDF
Abstract

Organ transplant recipients (OTRs) on cyclosporine A (CSA) are prone to catastrophic cutaneous squamous cell carcinoma (SCC). Allograft-sparing, cancer-targeting systemic treatments are unavailable. We have shown increased risk for catastrophic SCC in OTRs via CSA-mediated induction of IL-22. Herein, we found that CSA drives SCC proliferation and tumor growth through IL-22 and JAK/STAT pathway induction. We in turn inhibited SCC growth with an FDA-approved JAK1/2 inhibitor, ruxolitinib. In human SCC cells, the greatest proliferative response to IL-22 and CSA treatment occurred in nonmetastasizing lines. IL-22 treatment upregulated JAK1 and STAT1/3 in A431 SCC cells. JAK/STAT pathway genes were highly expressed in tumors from a cohort of CSA-exposed OTRs and in SCC with high risk for metastasis. Compared with immunocompetent SCC, genes associated with innate immunity, response to DNA damage, and p53 regulation were differentially expressed in SCC from OTRs. In nude mice engrafted with human A431 cells, IL-22 and CSA treatment increased tumor growth and upregulated IL-22 receptor, JAK1, and STAT1/3 expression. Ruxolitinib treatment significantly reduced tumor volume and reversed the accelerated tumor growth. CSA and IL-22 exacerbate aggressive behavior in SCC. Targeting the IL-22 axis via selective JAK/STAT inhibition may reduce the progression of aggressive SCC in OTRs, without compromising immunosuppression.

Authors

Melody Abikhair Burgo, Nazanin Roudiani, Jie Chen, Alexis L. Santana, Nicole Doudican, Charlotte Proby, Diane Felsen, John A. Carucci

×

Direct recognition of hepatocyte-expressed MHC class I alloantigens is required for tolerance induction
Moumita Paul-Heng, Mario Leong, Eithne Cunningham, Daniel L. J. Bunker, Katherine Bremner, Zane Wang, Chuanmin Wang, Szun Szun Tay, Claire McGuffog, Grant J. Logan, Ian E. Alexander, Min Hu, Stephen I. Alexander, Tim D. Sparwasser, Patrick Bertolino, David G. Bowen, G. Alex Bishop, Alexandra Sharland
Moumita Paul-Heng, Mario Leong, Eithne Cunningham, Daniel L. J. Bunker, Katherine Bremner, Zane Wang, Chuanmin Wang, Szun Szun Tay, Claire McGuffog, Grant J. Logan, Ian E. Alexander, Min Hu, Stephen I. Alexander, Tim D. Sparwasser, Patrick Bertolino, David G. Bowen, G. Alex Bishop, Alexandra Sharland
View: Text | PDF

Direct recognition of hepatocyte-expressed MHC class I alloantigens is required for tolerance induction

  • Text
  • PDF
Abstract

Adeno-associated viral vector–mediated (AAV-mediated) expression of allogeneic major histocompatibility complex class I (MHC class I) in recipient liver induces donor-specific tolerance in mouse skin transplant models in which a class I allele (H-2Kb or H-2Kd) is mismatched between donor and recipient. Tolerance can be induced in mice primed by prior rejection of a donor-strain skin graft, as well as in naive recipients. Allogeneic MHC class I may be recognized by recipient T cells as an intact molecule (direct recognition) or may be processed and presented as an allogeneic peptide in the context of self-MHC (indirect recognition). The relative contributions of direct and indirect allorecognition to tolerance induction in this setting are unknown. Using hepatocyte-specific AAV vectors encoding WT allogeneic MHC class I molecules, or class I molecules containing a point mutation (D227K) that impedes direct recognition of intact allogeneic MHC class I by CD8+ T cells without hampering the presentation of processed peptides derived from allogeneic MHC class I, we show here that tolerance induction depends upon recognition of intact MHC class I. Indirect recognition alone yielded a modest prolongation of subsequent skin graft survival, attributable to the generation of CD4+ Tregs, but it was not sufficient to induce tolerance.

Authors

Moumita Paul-Heng, Mario Leong, Eithne Cunningham, Daniel L. J. Bunker, Katherine Bremner, Zane Wang, Chuanmin Wang, Szun Szun Tay, Claire McGuffog, Grant J. Logan, Ian E. Alexander, Min Hu, Stephen I. Alexander, Tim D. Sparwasser, Patrick Bertolino, David G. Bowen, G. Alex Bishop, Alexandra Sharland

×
  • ← Previous
  • 1
  • 2
  • …
  • 9
  • 10
  • 11
  • …
  • 14
  • 15
  • Next →

No posts were found with this tag.

Advertisement

Copyright © 2026 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts