Diana Golden, Antonina Kolmakova, Sunitha Sura, Anthony T. Vella, Ani Manichaikul, Xin-Qun Wang, Suzette J. Bielinski, Kent D. Taylor, Yii-Der Ida Chen, Stephen S. Rich, Annabelle Rodriguez
Jennifer K Roe, Niclas Thomas, Eliza Gil, Katharine Best, Evdokia Tsaliki, Stephen Morris‑Jones, Sian Stafford, Nandi Simpson, Karolina D Witt, Benjamin Chain, Robert F Miller, Adrian Martineau, Mahdad Noursadeghi
BACKGROUND. Alopecia areata (AA) is an autoimmune disease characterized by hair loss mediated by CD8+ T cells. There are no reliably effective therapies for AA. Based on recent developments in the understanding of the pathomechanism of AA, JAK inhibitors appear to be a therapeutic option; however, their efficacy for the treatment of AA has not been systematically examined.
METHODS. This was a 2-center, open-label, single-arm trial using the pan-JAK inhibitor, tofacitinib citrate, for AA with >50% scalp hair loss, alopecia totalis (AT), and alopecia universalis (AU). Tofacitinib (5 mg) was given twice daily for 3 months. Endpoints included regrowth of scalp hair, as assessed by the severity of alopecia tool (SALT), duration of hair growth after completion of therapy, and disease transcriptome.
RESULTS. Of 66 subjects treated, 32% experienced 50% or greater improvement in SALT score. AA and ophiasis subtypes were more responsive than AT and AU subtypes. Shorter duration of disease and histological peribulbar inflammation on pretreatment scalp biopsies were associated with improvement in SALT score. Drug cessation resulted in disease relapse in 8.5 weeks. Adverse events were limited to grade I and II infections. An AA responsiveness to JAK/STAT inhibitors score was developed to segregate responders and nonresponders, and the previously developed AA disease activity index score tracked response to treatment.
CONCLUSIONS. At the dose and duration studied, tofacitinib is a safe and effective treatment for severe AA, though it does not result in a durable response. Transcriptome changes reveal unexpected molecular complexity within the disease.
TRIAL REGISTRATION. ClinicalTrials.gov NCT02197455 and NCT02312882.
FUNDING. This work was supported by the US Department of Veterans Affairs Office of Research and Development, National Institute of Arthritis and Musculoskeletal and Skin Diseases National Institutes of Health grant R01 AR47223 and U01 AR67173, the National Psoriasis Foundation, the Swedish Society of Medicine, the Fernström Foundation, the Locks of Love Foundation, the National Alopecia Areata Foundation, and the Ranjini and Ajay Poddar Resource Fund for Dermatologic Diseases Research.
Milène Kennedy Crispin, Justin M. Ko, Brittany G. Craiglow, Shufeng Li, Gautam Shankar, Jennifer R. Urban, James C. Chen, Jane E. Cerise, Ali Jabbari, Mårten C.G. Winge, M. Peter Marinkovich, Angela M. Christiano, Anthony E. Oro, Brett A. King
Julian Mackay-Wiggan, Ali Jabbari, Nhan Nguyen, Jane E. Cerise, Charlotte Clark, Grace Ulerio, Megan Furniss, Roger Vaughan, Angela M. Christiano, Raphael Clynes
Levodopa-induced dyskinesia (LID) is the most common, disruptive complication of Parkinson’s disease (PD) pharmacotherapy, yet despite decades of research, the changes in regional brain function underlying LID remain largely unknown. We previously found that the cerebral vasomotor and metabolic responses to levodopa are dissociated in PD subjects. Nonetheless, it is unclear whether levodopa-mediated dissociation is exaggerated in LID or distinguishes LID from non-LID subjects. To explore this possibility, we used dual-tracer positron emission tomography to quantify regional cerebral blood flow and metabolic activity in 28 PD subjects (14 LID, 14 non-LID), scanned before and during intravenous levodopa infusion. Levodopa-mediated dissociation was most prominent in the posterior putamen (
Vincent A. Jourdain, Chris C. Tang, Florian Holtbernd, Christian Dresel, Yoon Young Choi, Yilong Ma, Vijay Dhawan, David Eidelberg
Patrick H. Lizotte, Elena V. Ivanova, Mark M. Awad, Robert E. Jones, Lauren Keogh, Hongye Liu, Ruben Dries, Christina Almonte, Grit S. Herter-Sprie, Abigail Santos, Nora B. Feeney, Cloud P. Paweletz, Meghana M. Kulkarni, Adam J. Bass, Anil K. Rustgi, Guo-Cheng Yuan, Donald W. Kufe, Pasi A. Jänne, Peter S. Hammerman, Lynette M. Sholl, F. Stephen Hodi, William G. Richards, Raphael Bueno, Jessie M. English, Mark A. Bittinger, Kwok-Kin Wong
Ashutosh Lal, Esteban Gomez, Cassandra Calloway
Zoheb B. Kazi, Sean N. Prater, Joyce A. Kobori, David Viskochil, Carrie Bailey, Renuka Gera, David W. Stockton, Paul McIntosh, Amy S. Rosenberg, Priya S. Kishnani
Suresh Gopi Kalathil, Amit Anand Lugade, Austin Miller, Renuka Iyer, Yasmin Thanavala
BACKGROUND. Children treated with cerebrospinal fluid (CSF) shunts to manage hydrocephalus frequently develop shunt failure and/or infections, conditions that present with overlapping symptoms. The potential life-threatening nature of shunt infections requires rapid diagnosis; however, traditional microbiology is time consuming, expensive, and potentially unreliable. We set out to identify a biomarker that would identify shunt infection.
METHODS. CSF was assayed for the soluble membrane attack complex (sMAC) by ELISA in patients with suspected shunt failure or infection. CSF was obtained at the time of initial surgical intervention. Statistical analysis was performed to assess the diagnostic potential of sMAC in pyogenic-infected versus noninfected patients.
RESULTS. Children with pyogenic shunt infection had significantly increased sMAC levels compared with noninfected patients (3,211 ± 1,111 ng/ml vs. 26 ± 3.8 ng/ml,
CONCLUSION. Elevated CSF sMAC levels are both sensitive and specific for diagnosing pyogenic shunt infection and may serve as a useful prognostic biomarker during recovery from infection.
FUNDING. This work was supported in part by the Impact Fund of Children’s of Alabama.
Theresa N. Ramos, Anastasia A. Arynchyna, Tessa E. Blackburn, Scott R. Barnum, James M. Johnston
No posts were found with this tag.