Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Therapeutics

  • 310 Articles
  • 0 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 14
  • 15
  • 16
  • …
  • 30
  • 31
  • Next →
Dysregulated SREBP1c/miR-153 signaling induced by hypertriglyceridemia worsens acute pancreatitis and delays tissue repair
Juanjuan Dai, … , Xingpeng Wang, Guoyong Hu
Juanjuan Dai, … , Xingpeng Wang, Guoyong Hu
Published January 25, 2021
Citation Information: JCI Insight. 2021;6(2):e138584. https://doi.org/10.1172/jci.insight.138584.
View: Text | PDF

Dysregulated SREBP1c/miR-153 signaling induced by hypertriglyceridemia worsens acute pancreatitis and delays tissue repair

  • Text
  • PDF
Abstract

Severe acute pancreatitis (AP) is a life-threatening disease with up to 30% mortality. Therefore, prevention of AP aggravation and promotion of pancreatic regeneration are critical during the course and treatment of AP. Hypertriglyceridemia (HTG) is an established aggravating factor for AP that hinders pancreatic regeneration; however, its exact mechanism remains unclear. Using miRNA sequencing and further verification, we found that miRNA-153 (miR-153) was upregulated in the pancreas of HTG animal models and in the plasma of patients with HTG-AP. Increased miR-153 aggravated HTG-AP and delayed pancreatic repair via targeting TRAF3. Furthermore, miR-153 was transcriptionally suppressed by sterol regulatory element-binding transcription factor 1c (SREBP1c), which was suppressed by lipoprotein lipase malfunction-induced HTG. Overexpressing SREBP1c suppressed miR-153 expression, alleviated the severity of AP, and facilitated tissue regeneration in vivo. Finally, therapeutic administration of insulin also protected against HTG-AP via upregulating SREBP1c. Collectively, our results not only provide evidence that HTG leads to the development of more severe AP and hinders pancreatic regeneration via inducing persistent dysregulation of SREBP1c/miR-153 signaling, but also demonstrate that SREBP1c activators, including insulin, might be used to treat HTG-AP in patients.

Authors

Juanjuan Dai, Mingjie Jiang, Yangyang Hu, Jingbo Xiao, Bin Hu, Jiyao Xu, Xiao Han, Shuangjun Shen, Bin Li, Zengkai Wu, Yan He, Yingchun Ren, Li Wen, Xingpeng Wang, Guoyong Hu

×

A genome-wide CRISPR/Cas9 screen in acute myeloid leukemia cells identifies regulators of TAK-243 sensitivity
Samir H. Barghout, … , Rima Al-Awar, Aaron D. Schimmer
Samir H. Barghout, … , Rima Al-Awar, Aaron D. Schimmer
Published January 21, 2021
Citation Information: JCI Insight. 2021. https://doi.org/10.1172/jci.insight.141518.
View: Text | PDF

A genome-wide CRISPR/Cas9 screen in acute myeloid leukemia cells identifies regulators of TAK-243 sensitivity

  • Text
  • PDF
Abstract

TAK-243 is a first-in-class inhibitor of ubiquitin-like modifier activating enzyme 1 (UBA1) that catalyzes ubiquitin activation, the first step in the ubiquitylation cascade. Based on its preclinical efficacy and tolerability, TAK-243 has been advanced to phase 1 clinical trials in advanced malignancies. Nonetheless, the determinants of TAK-243 sensitivity remain largely unknown. Here, we conducted a genome-wide CRISPR/Cas9 knockout screen in acute myeloid leukemia (AML) cells in the presence of TAK-243 to identify genes essential for TAK-243 action. We identified BEN domain-containing protein 3 (BEND3), a transcriptional repressor and a regulator of chromatin organization, as the top gene whose knockout confers resistance to TAK-243 in vitro and in vivo. Knockout of BEND3 dampened TAK-243 effects on ubiquitylation, proteotoxic stress, and DNA damage response. BEND3 knockout upregulated the ABC efflux transporter breast cancer resistance protein (BCRP; ABCG2), and reduced the intracellular levels of TAK-243. TAK-243 sensitivity correlated with BCRP expression in cancer cell lines of different origin. Moreover, chemical inhibition and genetic knockdown of BCRP sensitized intrinsically resistant high-BCRP cells to TAK-243. Thus, our data demonstrate that BEND3 regulates the expression of BCRP for which TAK-243 is a substrate. Moreover, BCRP expression could serve as a predictor of TAK-243 sensitivity.

Authors

Samir H. Barghout, Ahmed Aman, Kazem Nouri, Zachary Blatman, Karen Arevalo, Geethu E. Thomas, Neil MacLean, Rose Hurren, Troy Ketela, Mehakpreet Saini, Moustafa Abohawya, Taira Kiyota, Rima Al-Awar, Aaron D. Schimmer

×

Characterization of quinoxaline derivatives for protection against iatrogenic-induced hearing loss
Marisa Zallocchi, … , David Z. He, Jian Zuo
Marisa Zallocchi, … , David Z. He, Jian Zuo
Published January 21, 2021
Citation Information: JCI Insight. 2021. https://doi.org/10.1172/jci.insight.141561.
View: Text | PDF

Characterization of quinoxaline derivatives for protection against iatrogenic-induced hearing loss

  • Text
  • PDF
Abstract

Hair cell loss is the leading cause of hearing and balance disorders in humans. It can be caused by many factors, including noise, aging, and therapeutic agents. Previous studies have shown the therapeutic potential of quinoxaline against drug-induced ototoxicity. Here, we screened a library of 68 quinoxaline derivatives for protection against aminoglycoside-induced damage of hair cells from the zebrafish lateral line. We identified Qx28 as the best quinoxaline derivative that provides robust protection against both aminoglycosides and cisplatin in zebrafish and mouse cochlear explants. FM1-43 and aminoglycoside uptake, as well as antibiotic efficacy studies, reveal that Qx28 is neither blocking the mechanotransduction channels nor interfering with aminoglycoside antibacterial activity, suggesting that it may be protecting the hair cells by directly counteracting the ototoxin’s mechanism of action. Only when animals were incubated with higher doses of Qx28 we observed a partial blockage of the mechanotransduction channels. Finally, we assessed the regulation of NF-κB pathway in vitro in mouse embryonic fibroblasts and in vivo in zebrafish larvae. Those studies showed that Qx28 protects hair cells by blocking NF-κB canonical pathway activation. Thus, Qx28 is a promising and versatile otoprotectant that can act across different species and toxins.

Authors

Marisa Zallocchi, Santanu Hati, Zhenhang Xu, William Hausman, Huizhan Liu, David Z. He, Jian Zuo

×

Pharmacological chaperone action in humanized mouse models of MC4R-linked obesity
Patricia René, … , Denis Richard, Michel Bouvier
Patricia René, … , Denis Richard, Michel Bouvier
Published January 12, 2021
Citation Information: JCI Insight. 2021. https://doi.org/10.1172/jci.insight.132778.
View: Text | PDF

Pharmacological chaperone action in humanized mouse models of MC4R-linked obesity

  • Text
  • PDF
Abstract

MC4R mutations represent the largest monogenic cause of obesity, resulting mainly from receptor misfolding and intracellular retention by the cellular quality control system. The present study aimed at determining whether pharmacological chaperones (PC) that restore folding and plasma membrane trafficking by stabilizing near native protein conformation, may represent valid therapeutic avenues for the treatment of melanocortin type 4 receptor (MC4R) linked obesity.To test the therapeutic PC potential, we engineered humanized MC4R mouse models expressing either the wild type (WT) human MC4R or a prevalent obesity-causing mutant (R165W). Administration of a PC able to rescue cell surface expression and functional activity of R165W-hMC4R in cells, restored the anorexigenic response of the R165W-hMC4R obese mice to melanocortin agonist, providing a proof-of-principle for the therapeutic potential of MC4R-targetting PC in vivo. Interestingly, the expression of the WT-hMC4R in mice revealed lower sensitivity of the human receptor to alpha-melanocyte-stimulating hormone (α-MSH) but not β-MSH or MTII, resulting in a lower penetrance obese phenotype in the WT-hMC4R versus R165W-hMC4R mice. In conclusion, we created two new obesity models, one hypomorph highlighting species differences, and one amorphic that provides a pre-clinical model to test the therapeutic potential of PC to treat MC4R-linked obesity.

Authors

Patricia René, Damien Lanfray, Denis Richard, Michel Bouvier

×

A STAT3 inhibitor ameliorates CNS autoimmunity by restoring Teff:Treg Balance
Saba I. Aqel, … , Chenglong Li, Yuhong Yang
Saba I. Aqel, … , Chenglong Li, Yuhong Yang
Published January 7, 2021
Citation Information: JCI Insight. 2021. https://doi.org/10.1172/jci.insight.142376.
View: Text | PDF

A STAT3 inhibitor ameliorates CNS autoimmunity by restoring Teff:Treg Balance

  • Text
  • PDF
Abstract

Reestablishing an appropriate balance between T effector cells (Teff) and T regulatory cells (Treg) is essential for correcting autoimmunity. Multiple Sclerosis (MS) is an immune-mediated chronic central nervous system (CNS) disease characterized by neuroinflammation, demyelination, and neuronal degeneration, in which the Teff:Treg balance is skewed toward pathogenic Teff cells, Th1 and Th17 cells. Signal transducer and activator of transcription 3 (STAT3) is a key regulator of Teff:Treg balance. Using the structure-based design, we have developed a novel small-molecule prodrug LLL12b that specifically inhibits STAT3 and suppresses Th17 differentiation and expansion. Moreover, LLL12b regulates the fate decision between Th17 and Tregs in an inflammatory environment, shifting Th17:Treg balance toward Tregs and favoring the resolution of inflammation. Therapeutic administration of LLL12b after disease onset significantly suppresses disease progression in adoptively transferred, chronic, and relapsing-remitting experimental autoimmune encephalomyelitis. Disease relapses were also significantly suppressed by LLL12b given during the remission phase. Additionally, LLL12b shifts Th17:Treg balance of CD4 T cells from MS patients toward Tregs and increases Teff sensitivity to Treg-mediated suppression. These data suggest selective inhibition of STAT3 by the novel small molecule LLL12b recalibrates the effector and regulatory arms of CD4 T responses, representing a potentially clinically translatable therapeutic strategy for MS.

Authors

Saba I. Aqel, Xiaozhi Yang, Emma E. Kraus, Jinhua Song, Marissa F. Farinas, Erin Y. Zhao, Wei Pei, Amy E. Lovett-Racke, Michael K. Racke, Chenglong Li, Yuhong Yang

×

Repurposing calcium sensing receptor agonist cinacalcet for treatment of CFTR-mediated secretory diarrheas
Apurva A. Oak, … , Alan S. Verkman, Onur Cil
Apurva A. Oak, … , Alan S. Verkman, Onur Cil
Published January 5, 2021
Citation Information: JCI Insight. 2021. https://doi.org/10.1172/jci.insight.146823.
View: Text | PDF

Repurposing calcium sensing receptor agonist cinacalcet for treatment of CFTR-mediated secretory diarrheas

  • Text
  • PDF
Abstract

Diarrhea is a major cause of global mortality, and outbreaks of secretory diarrhea such as cholera remain an important problem in the developing world. Current treatment of secretory diarrhea primarily involves supportive measures such as fluid replacement. The calcium-sensing receptor (CaSR) regulates multiple biological activities in response to changes in extracellular Ca+2. The FDA-approved drug cinacalcet is an allosteric activator of CaSR used for treatment of hyperparathyroidism. Here, we found by short-circuit current measurements in human colonic T84 cells that CaSR activation by cinacalcet reduced forskolin-induced Cl- secretion by greater than 80%. Cinacalcet also reduced Cl- secretion induced by cholera toxin, heat-stable E. coli enterotoxin, and vasoactive intestinal peptide (VIP). The cinacalcet effect primarily involved indirect inhibition of cystic fibrosis transmembrane conductance regulator (CFTR)-mediated Cl- secretion following activation of CaSR, and downstream phospholipase C and phosphodiesterases. In mice, cinacalcet reduced fluid accumulation by more than 60% in intestinal closed-loop models of cholera and Traveler’s diarrhea. The cinacalcet effect involved both inhibition of CFTR-mediated secretion and stimulation of sodium-hydrogen exchanger 3 (NHE3)-mediated absorption. These findings support the therapeutic utility of the safe and commonly used drug cinacalcet in CFTR-dependent secretory diarrheas including cholera, Traveler’s diarrhea and VIPoma.

Authors

Apurva A. Oak, Parth D. Chhetri, Amber Rivera, Alan S. Verkman, Onur Cil

×

Direct conversion of osteosarcoma to adipocytes by targeting TNIK
Toru Hirozane, … , Eisuke Kobayashi, Tesshi Yamada
Toru Hirozane, … , Eisuke Kobayashi, Tesshi Yamada
Published January 5, 2021
Citation Information: JCI Insight. 2021. https://doi.org/10.1172/jci.insight.137245.
View: Text | PDF

Direct conversion of osteosarcoma to adipocytes by targeting TNIK

  • Text
  • PDF
Abstract

Osteosarcoma (OS) is an aggressive mesenchymal tumor for which no molecularly targeted therapies are available. We have previously identified TRAF2 and NCK-interacting protein kinase (TNIK) as an essential factor for the transactivation of Wnt signal target genes and shown that its inhibition leads to eradication of colorectal cancer stem cells. The involvement of Wnt signaling in the pathogenesis of OS has been implicated. The aim of the present study was to examine the potential of TNIK as a therapeutic target in OS. RNA interference or pharmacological inhibition of TNIK suppressed the proliferation of OS cells. Transcriptome analysis suggested that a small-molecule inhibitor of TNIK up-regulated the expression of genes involved in OS cell metabolism and down-regulated transcription factors essential for maintaining the stem cell phenotype. Metabolome analysis revealed that this TNIK inhibitor redirected the metabolic network from carbon flux towards lipid accumulation in OS cells. Using in vitro and in vivo OS models, we confirmed that TNIK inhibition abrogated the OS stem cell phenotype, simultaneously driving conversion of OS cells to adipocyte-like cells through induction of peroxisome proliferator-activated receptor-γ. In relation to potential therapeutic targeting in clinical practice, TNIK was confirmed to be in an active state in OS cell lines and clinical specimens. From these findings, we conclude that TNIK is applicable as a potential target for treatment of OS, affecting cell fate determination.

Authors

Toru Hirozane, Mari Masuda, Teppei Sugano, Tetsuya Sekita, Naoko Goto, Toru Aoyama, Takato Sakagami, Yuko Uno, Hideki Moriyama, Masaaki Sawa, Naofumi Asano, Masaya Nakamura, Morio Matsumoto, Robert Nakayama, Tadashi Kondo, Akira Kawai, Eisuke Kobayashi, Tesshi Yamada

×

Identification of Wee1 as target in combination with avapritinib for Gastrointestinal Stromal Tumor treatment
Shuai Ye, … , James S. Duncan, Lori Rink
Shuai Ye, … , James S. Duncan, Lori Rink
Published December 15, 2020
Citation Information: JCI Insight. 2020. https://doi.org/10.1172/jci.insight.143474.
View: Text | PDF

Identification of Wee1 as target in combination with avapritinib for Gastrointestinal Stromal Tumor treatment

  • Text
  • PDF
Abstract

Management of Gastrointestinal stromal tumor (GIST) has been revolutionized by the identification of activating mutations in KIT and PDGFRA and clinical application of receptor tyrosine kinase (RTK) inhibitors in advanced disease. Stratification of GIST into molecularly defined subsets provides insight into clinical behavior and response to approved targeted therapies. Although these RTK inhibitors are effective in most GIST, resistance remains a significant clinical problem. Development of effective treatment strategies for refractory GIST requires identification of novel targets to provide additional therapeutic options. Global kinome profiling has potential to identify critical signaling networks and reveal protein kinases essential in GIST. Using Multiplexed Inhibitor Beads and Mass Spectrometry, we explored the majority of the kinome in GIST specimens from the three most common molecular subtypes (KIT-mutant, PDGFRA-mutant, Succinate dehydrogenase (SDH)-deficient) to identify novel kinase targets. Kinome profiling with loss-of-function assays identified an important role for G2-M tyrosine kinase, Wee1, in GIST cell survival. In vitro and in vivo studies revealed significant efficacy of MK-1775 (Wee1 inhibitor) in combination with avapritinib in KIT and PDGFRA-mutant GIST cell lines, and notable efficacy of MK-1775 as a monotherapy in the PDGFRA-mutant line. These studies provide strong preclinical justification for the use of MK-1775 in GIST.

Authors

Shuai Ye, Dinara Sharipova, Marya Kozinova, Lillian R. Klug, Jimson W. D'Souza, Martin G. Belinsky, Katherine J. Johnson, Margret B. Einarson, Karthik Devarajan, Yan Zhou, Samuel Litwin, Michael C. Heinrich, Ronald P. DeMatteo, Margaret von Mehren, James S. Duncan, Lori Rink

×

Lipoproteins LDL versus HDL as nanocarriers to target either cancer cells or macrophages
Tarik Hadi, … , Carmen Garrido, Frederic Lirussi
Tarik Hadi, … , Carmen Garrido, Frederic Lirussi
Published November 30, 2020
Citation Information: JCI Insight. 2020. https://doi.org/10.1172/jci.insight.140280.
View: Text | PDF

Lipoproteins LDL versus HDL as nanocarriers to target either cancer cells or macrophages

  • Text
  • PDF
Abstract

In this work, we have explored natural unmodified low- and high-density lipoproteins (LDL and HDL) as selective delivery vectors in colorectal cancer therapy. We show in vitro in cultured cells and in vivo (NanoSPECT/CT) in the CT-26 mice colorectal cancer model that LDLs are mainly taken up by cancer cells, while HDLs are preferentially taken up by macrophages. We loaded LDLs with cisplatin and HDLs with the heat shock protein-70 inhibitor AC1LINNC, turning them into a pair of “Trojan horses” delivering drugs selectively to their target cells as demonstrated in vitro in human colorectal cancer cells and macrophages, and in vivo. Coupling of the drugs to lipoproteins and stability was assessed by mass and raman spectrometry analysis. Cisplatin vectorized in LDLs led to better tumor growth suppression with strongly reduced adverse effects such as a renal or liver toxicity. AC1LINNC vectorized into HDLs induced a strong oxidative burst in macrophages and innate anti-cancer immune response. Cumulative anti-tumor effect was observed for both drug-loaded lipoproteins. Altogether, our data show that lipoproteins from patient’s blood can be used as natural nanocarriers allowing cell specific targeting, paving the way toward more efficient, safer and personalized use of chemo-and immunotherapeutic drugs in cancer.

Authors

Tarik Hadi, Christophe Ramseyer, Thomas Gautier, Pierre-Simon Bellaye, Tatiana Lopez, Antonin Schmitt, Foley Sarah, Semen Yesylevskyy, Thibault Minervini, Romain Douhard, Lucile Dondaine, Lil Proukhnitzky, Samir Messaoudi, Maeva Wendremaire, Mathieu Moreau, Fabrice Neiers, Bertrand Collin, Franck Denat, Laurent Lagrost, Carmen Garrido, Frederic Lirussi

×

A soluble activator that favors the ex vivo expansion of CD8+CD27+ T cells
Esther I. Matus, … , Amanda Sparkes, Jean Gariépy
Esther I. Matus, … , Amanda Sparkes, Jean Gariépy
Published November 19, 2020
Citation Information: JCI Insight. 2020;5(22):e141293. https://doi.org/10.1172/jci.insight.141293.
View: Text | PDF

A soluble activator that favors the ex vivo expansion of CD8+CD27+ T cells

  • Text
  • PDF
Abstract

Adoptive cell therapy involves the infusion of tumor-reactive T cells into patients with cancer to provide antitumor immunity. The ex vivo expansion and differentiation of such T cells are key parameters that affect their therapeutic potential. Human T cells are presently expanded in culture through the use of anti-CD3 and anti-CD28 mAbs immobilized on beads, expressed on cells, or assembled in the context of soluble antibody complexes. Here we report the design of a small, bispecific single-chain variable fragment construct agonizing both CD3 and CD28 pathways. This soluble T cell expansion protein, termed T-CEP, activates, expands, and differentiates human T cells ex vivo at concentrations in the femtomolar range. Importantly, T-CEP promotes the preferential growth of human CD8+ T cells over the course of 12 days in comparison with methods involving immobilized anti-CD3 mAb/soluble anti-CD28 mAb or soluble anti-CD3/CD28 mAb complexes. The differentiation profile of the resulting human T cell population is also singularly affected by T-CEP, favoring the expansion of a preferred CD8+CD27+ T cell phenotype. The activity profile of T-CEP on human T cells ex vivo suggests its use in generating human T cell populations that are more suited for adoptive cell therapy.

Authors

Esther I. Matus, Amanda Sparkes, Jean Gariépy

×
  • ← Previous
  • 1
  • 2
  • …
  • 14
  • 15
  • 16
  • …
  • 30
  • 31
  • Next →

No posts were found with this tag.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts