Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Muscle biology

  • 125 Articles
  • 0 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 11
  • 12
  • 13
  • Next →
Deletion of neuropilin 2 enhances detrusor contractility following bladder outlet obstruction
Evalynn Vasquez, Vivian Cristofaro, Stefan Lukianov, Fiona C. Burkhard, Ali Hashemi Gheinani, Katia Monastyrskaya, Diane R. Bielenberg, Maryrose P. Sullivan, Rosalyn M. Adam
Evalynn Vasquez, Vivian Cristofaro, Stefan Lukianov, Fiona C. Burkhard, Ali Hashemi Gheinani, Katia Monastyrskaya, Diane R. Bielenberg, Maryrose P. Sullivan, Rosalyn M. Adam
View: Text | PDF

Deletion of neuropilin 2 enhances detrusor contractility following bladder outlet obstruction

  • Text
  • PDF
Abstract

Chronic urethral obstruction and the ensuing bladder wall remodeling can lead to diminished bladder smooth muscle (BSM) contractility and debilitating lower urinary tract symptoms. No effective pharmacotherapy exists to restore BSM contractile function. Neuropilin 2 (Nrp2) is a transmembrane protein that is highly expressed in BSM. Nrp2 deletion in mice leads to increased BSM contraction. We determined whether genetic ablation of Nrp2 could restore BSM contractility following obstruction. Partial bladder outlet obstruction (pBOO) was created by urethral occlusion in mice with either constitutive and ubiquitous, or inducible smooth muscle–specific deletion of Nrp2, and Nrp2-intact littermates. Mice without obstruction served as additional controls. Contractility was measured by isometric tension testing. Nrp2 deletion prior to pBOO increased force generation in BSM 4 weeks following surgery. Deletion of Nrp2 in mice already subjected to pBOO for 4 weeks showed increased contractility of tissues tested 6 weeks after surgery compared with nondeleted controls. Assessment of tissues from patients with urodynamically defined bladder outlet obstruction revealed reduced NRP2 levels in obstructed bladders with compensated compared with decompensated function, relative to asymptomatic controls. We conclude that downregulation of Nrp2 promotes BSM force generation. Neuropilin 2 may represent a novel target to restore contractility following obstruction.

Authors

Evalynn Vasquez, Vivian Cristofaro, Stefan Lukianov, Fiona C. Burkhard, Ali Hashemi Gheinani, Katia Monastyrskaya, Diane R. Bielenberg, Maryrose P. Sullivan, Rosalyn M. Adam

×

Characterization of miRNA-regulated networks, hubs of signaling, and biomarkers in obstruction-induced bladder dysfunction
Ali Hashemi Gheinani, Bernhard Kiss, Felix Moltzahn, Irene Keller, Rémy Bruggmann, Hubert Rehrauer, Catharine Aquino Fournier, Fiona C. Burkhard, Katia Monastyrskaya
Ali Hashemi Gheinani, Bernhard Kiss, Felix Moltzahn, Irene Keller, Rémy Bruggmann, Hubert Rehrauer, Catharine Aquino Fournier, Fiona C. Burkhard, Katia Monastyrskaya
View: Text | PDF

Characterization of miRNA-regulated networks, hubs of signaling, and biomarkers in obstruction-induced bladder dysfunction

  • Text
  • PDF
Abstract

Bladder outlet obstruction (BOO) induces significant organ remodeling, leading to lower urinary tract symptoms accompanied by urodynamic changes in bladder function. Here, we report mRNA and miRNA transcriptome sequencing of bladder samples from human patients with different urodynamically defined states of BOO. Patients’ miRNA and mRNA expression profiles correlated with urodynamic findings. Validation of RNA sequencing results in an independent patient cohort identified combinations of 3 mRNAs (NRXN3, BMP7, UPK1A) and 3 miRNAs (miR-103a-3p, miR-10a-5p, miR-199a-3p) sufficient to discriminate between bladder functional states. All BOO patients shared cytokine and immune response pathways, TGF-β and NO signaling pathways, and hypertrophic PI3K/AKT signaling pathways. AP-1 and NFkB were dominant transcription factors, and TNF-α was the top upstream regulator. Integrated miRNA-mRNA expression analysis identified pathways and molecules targeted by differentially expressed miRNAs. Molecular changes in BOO suggest an increasing involvement of miRNAs in the control of bladder function from the overactive to underactive/acontractile states.

Authors

Ali Hashemi Gheinani, Bernhard Kiss, Felix Moltzahn, Irene Keller, Rémy Bruggmann, Hubert Rehrauer, Catharine Aquino Fournier, Fiona C. Burkhard, Katia Monastyrskaya

×

Disease-modifying effects of orally bioavailable NF-κB inhibitors in dystrophin-deficient muscle
David W. Hammers, Margaret M. Sleeper, Sean C. Forbes, Cora C. Coker, Michael R. Jirousek, Michael Zimmer, Glenn A. Walter, H. Lee Sweeney
David W. Hammers, Margaret M. Sleeper, Sean C. Forbes, Cora C. Coker, Michael R. Jirousek, Michael Zimmer, Glenn A. Walter, H. Lee Sweeney
View: Text | PDF

Disease-modifying effects of orally bioavailable NF-κB inhibitors in dystrophin-deficient muscle

  • Text
  • PDF
Abstract

Duchenne muscular dystrophy (DMD) is a devastating muscle disease characterized by progressive muscle deterioration and replacement with an aberrant fatty, fibrous matrix. Chronic upregulation of nuclear factor κB (NF-κB) is implicated as a driver of the dystrophic pathogenesis. Herein, 2 members of a novel class of NF-κB inhibitors, edasalonexent (formerly CAT-1004) and CAT-1041, were evaluated in both mdx mouse and golden retriever muscular dystrophy (GRMD) dog models of DMD. These orally bioavailable compounds consist of a polyunsaturated fatty acid conjugated to salicylic acid and potently suppress the pathogenic NF-κB subunit p65/RelA in vitro. In vivo, CAT-1041 effectively improved the phenotype of mdx mice undergoing voluntary wheel running, in terms of activity, muscle mass and function, damage, inflammation, fibrosis, and cardiac pathology. We identified significant increases in dysferlin as a possible contributor to the protective effect of CAT-1041 to sarcolemmal damage. Furthermore, CAT-1041 improved the more severe GRMD phenotype in a canine case study, where muscle mass and diaphragm function were maintained in a treated GRMD dog. These results demonstrate that NF-κB modulation by edasalonexent and CAT-1041 is effective in ameliorating the dystrophic process and these compounds are candidates for new treatments for DMD patients.

Authors

David W. Hammers, Margaret M. Sleeper, Sean C. Forbes, Cora C. Coker, Michael R. Jirousek, Michael Zimmer, Glenn A. Walter, H. Lee Sweeney

×

Maternal obesity reduces oxidative capacity in fetal skeletal muscle of Japanese macaques
Carrie E. McCurdy, Simon Schenk, Byron Hetrick, Julie Houck, Brian G. Drew, Spencer Kaye, Melanie Lashbrook, Bryan C. Bergman, Diana L. Takahashi, Tyler A. Dean, Travis Nemkov, Ilya Gertsman, Kirk C. Hansen, Andrew Philp, Andrea L. Hevener, Adam J. Chicco, Kjersti M. Aagaard, Kevin L. Grove, Jacob E. Friedman
Carrie E. McCurdy, Simon Schenk, Byron Hetrick, Julie Houck, Brian G. Drew, Spencer Kaye, Melanie Lashbrook, Bryan C. Bergman, Diana L. Takahashi, Tyler A. Dean, Travis Nemkov, Ilya Gertsman, Kirk C. Hansen, Andrew Philp, Andrea L. Hevener, Adam J. Chicco, Kjersti M. Aagaard, Kevin L. Grove, Jacob E. Friedman
View: Text | PDF

Maternal obesity reduces oxidative capacity in fetal skeletal muscle of Japanese macaques

  • Text
  • PDF
Abstract

Maternal obesity is proposed to alter the programming of metabolic systems in the offspring, increasing the risk for developing metabolic diseases; however, the cellular mechanisms remain poorly understood. Here, we used a nonhuman primate model to examine the impact of a maternal Western-style diet (WSD) alone, or in combination with obesity (Ob/WSD), on fetal skeletal muscle metabolism studied in the early third trimester. We find that fetal muscle responds to Ob/WSD by upregulating fatty acid metabolism, mitochondrial complex activity, and metabolic switches (CPT-1, PDK4) that promote lipid utilization over glucose oxidation. Ob/WSD fetuses also had reduced mitochondrial content, diminished oxidative capacity, and lower mitochondrial efficiency in muscle. The decrease in oxidative capacity and glucose metabolism was persistent in primary myotubes from Ob/WSD fetuses despite no additional lipid-induced stress. Switching obese mothers to a healthy diet prior to pregnancy did not improve fetal muscle mitochondrial function. Lastly, while maternal WSD alone led only to intermediary changes in fetal muscle metabolism, it was sufficient to increase oxidative damage and cellular stress. Our findings suggest that maternal obesity or WSD, alone or in combination, leads to programmed decreases in oxidative metabolism in offspring muscle. These alterations may have important implications for future health.

Authors

Carrie E. McCurdy, Simon Schenk, Byron Hetrick, Julie Houck, Brian G. Drew, Spencer Kaye, Melanie Lashbrook, Bryan C. Bergman, Diana L. Takahashi, Tyler A. Dean, Travis Nemkov, Ilya Gertsman, Kirk C. Hansen, Andrew Philp, Andrea L. Hevener, Adam J. Chicco, Kjersti M. Aagaard, Kevin L. Grove, Jacob E. Friedman

×

Integrated expression analysis of muscle hypertrophy identifies Asb2 as a negative regulator of muscle mass
Jonathan R. Davey, Kevin I. Watt, Benjamin L. Parker, Rima Chaudhuri, James G. Ryall, Louise Cunningham, Hongwei Qian, Vittorio Sartorelli, Marco Sandri, Jeffrey Chamberlain, David E. James, Paul Gregorevic
Jonathan R. Davey, Kevin I. Watt, Benjamin L. Parker, Rima Chaudhuri, James G. Ryall, Louise Cunningham, Hongwei Qian, Vittorio Sartorelli, Marco Sandri, Jeffrey Chamberlain, David E. James, Paul Gregorevic
View: Text | PDF

Integrated expression analysis of muscle hypertrophy identifies Asb2 as a negative regulator of muscle mass

  • Text
  • PDF
Abstract

The transforming growth factor-β (TGF-β) signaling network is a critical regulator of skeletal muscle mass and function and, thus, is an attractive therapeutic target for combating muscle disease, but the underlying mechanisms of action remain undetermined. We report that follistatin-based interventions (which modulate TGF-β network activity) can promote muscle hypertrophy that ameliorates aging-associated muscle wasting. However, the muscles of old sarcopenic mice demonstrate reduced response to follistatin compared with healthy young-adult musculature. Quantitative proteomic and transcriptomic analyses of young-adult muscles identified a transcription/translation signature elicited by follistatin exposure, which included repression of ankyrin repeat and SOCS box protein 2 (Asb2). Increasing expression of ASB2 reduced muscle mass, thereby demonstrating that Asb2 is a TGF-β network–responsive negative regulator of muscle mass. In contrast to young-adult muscles, sarcopenic muscles do not exhibit reduced ASB2 abundance with follistatin exposure. Moreover, preventing repression of ASB2 in young-adult muscles diminished follistatin-induced muscle hypertrophy. These findings provide insight into the program of transcription and translation events governing follistatin-mediated adaptation of skeletal muscle attributes and identify Asb2 as a regulator of muscle mass implicated in the potential mechanistic dysfunction between follistatin-mediated muscle growth in young and old muscles.

Authors

Jonathan R. Davey, Kevin I. Watt, Benjamin L. Parker, Rima Chaudhuri, James G. Ryall, Louise Cunningham, Hongwei Qian, Vittorio Sartorelli, Marco Sandri, Jeffrey Chamberlain, David E. James, Paul Gregorevic

×
  • ← Previous
  • 1
  • 2
  • …
  • 11
  • 12
  • 13
  • Next →

No posts were found with this tag.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts