Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Inflammation

  • 474 Articles
  • 0 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 7
  • 8
  • 9
  • …
  • 47
  • 48
  • Next →
Periarticular myositis and muscle fibrosis are cytokine dependent complications of inflammatory arthritis
Jessica Day, Cynthia Louis, Kristy Swiderski, Angus Stock, Huon Wong, Wentao Yao, Bonnia Liu, Suba Nadesapillai, Gordon S. Lynch, Ian P. Wicks
Jessica Day, Cynthia Louis, Kristy Swiderski, Angus Stock, Huon Wong, Wentao Yao, Bonnia Liu, Suba Nadesapillai, Gordon S. Lynch, Ian P. Wicks
View: Text | PDF

Periarticular myositis and muscle fibrosis are cytokine dependent complications of inflammatory arthritis

  • Text
  • PDF
Abstract

The deleterious consequences of chronic synovitis on cartilage, tendon and bone in rheumatoid arthritis (RA) are well-described. In contrast, its effects on periarticular skeletal muscle are under-studied. Further, while TNF inhibition is an effective therapy for RA synovitis, it exacerbates fibrosis in muscle injury models. We aimed to investigate whether myositis and muscle fibrosis are features of inflammatory arthritis and evaluate whether targeted RA therapies influence these disease features. Periarticular muscle was analysed in murine models of poly- and mono-articular inflammatory arthritis: serum transfer induced arthritis, collagen-induced arthritis, K/BxN, and antigen-induced arthritis (AIA). Periarticular myositis and an increase in muscle fibroadipocyte progenitor cells (FAPs) were observed in all models, despite diverse arthritogenic mechanisms. Periarticular muscle fibrosis was observed from day 15 in AIA. Neither etanercept nor baricitinib suppressed periarticular myositis or subsequent fibrosis compared to vehicle, despite reducing arthritis. Notably, etanercept failed to prevent muscle fibrosis even when initiated early, but this was not linked to increased FAPs survival or collagen production. Corroborating these data, radiographic and histological analyses revealed periarticular myositis in RA patients. We conclude that periarticular myositis and fibrosis are under-recognised features of inflammatory arthritis. Targeted RA therapies may not prevent periarticular muscle sequelae, despite controlling arthritis.

Authors

Jessica Day, Cynthia Louis, Kristy Swiderski, Angus Stock, Huon Wong, Wentao Yao, Bonnia Liu, Suba Nadesapillai, Gordon S. Lynch, Ian P. Wicks

×

The transcription factor ZNF469 regulates collagen production in liver fibrosis
Sebastian Steinhauser, David Estoppey, Dennis P. Buehler, Yanhua Xiong, Nicolas Pizzato, Amandine Rietsch, Fabian Wu, Nelly Leroy, Tiffany Wunderlin, Isabelle Claerr, Philipp Tropberger, Miriam Müller, Alexandra Vissieres, Lindsay M. Davison, Eric H. Farber-Eger, Quinn S. Wells, Quanhu Sheng, Sebastian Bergling, Sophia A Wild, Pierre Moulin, Jiancong Liang, Wayne J. English, Brandon Williams, Judith Knehr, Marc Altorfer, Alejandro Reyes, Johannes Voshol, Craig Mickanin, Dominic Hoepfner, Florian Nigsch, Mathias Frederiksen, Charles R. Flynn, Barna D. Fodor, Jonathan D. Brown, Christian Kolter
Sebastian Steinhauser, David Estoppey, Dennis P. Buehler, Yanhua Xiong, Nicolas Pizzato, Amandine Rietsch, Fabian Wu, Nelly Leroy, Tiffany Wunderlin, Isabelle Claerr, Philipp Tropberger, Miriam Müller, Alexandra Vissieres, Lindsay M. Davison, Eric H. Farber-Eger, Quinn S. Wells, Quanhu Sheng, Sebastian Bergling, Sophia A Wild, Pierre Moulin, Jiancong Liang, Wayne J. English, Brandon Williams, Judith Knehr, Marc Altorfer, Alejandro Reyes, Johannes Voshol, Craig Mickanin, Dominic Hoepfner, Florian Nigsch, Mathias Frederiksen, Charles R. Flynn, Barna D. Fodor, Jonathan D. Brown, Christian Kolter
View: Text | PDF

The transcription factor ZNF469 regulates collagen production in liver fibrosis

  • Text
  • PDF
Abstract

Metabolic dysfunction-associated steatotic liver disease (MASLD)—characterized by excess accumulation of fat in the liver—now affects one third of the world’s population. As MASLD progresses, extracellular matrix components including collagen accumulate in the liver causing tissue fibrosis, a major determinant of disease severity and mortality. To identify transcriptional regulators of fibrosis, we computationally inferred the activity of transcription factors (TFs) relevant to fibrosis by profiling the matched transcriptomes and epigenomes of 108 human liver biopsies from a deeply characterized cohort of patients spanning the full histopathologic spectrum of MASLD. CRISPR-based genetic knockout of the top 100 TFs identified ZNF469 as a regulator of collagen expression in primary human hepatic stellate cells (HSCs). Gain- and loss-of-function studies established that ZNF469 regulates collagen genes and genes involved in matrix homeostasis through direct binding to gene bodies and regulatory elements. By integrating multiomic large-scale profiling of human biopsies with extensive experimental validation we demonstrate that ZNF469 is a transcriptional regulator of collagen in HSCs. Overall, these data nominate ZNF469 as a previously unrecognized determinant of MASLD-associated liver fibrosis.

Authors

Sebastian Steinhauser, David Estoppey, Dennis P. Buehler, Yanhua Xiong, Nicolas Pizzato, Amandine Rietsch, Fabian Wu, Nelly Leroy, Tiffany Wunderlin, Isabelle Claerr, Philipp Tropberger, Miriam Müller, Alexandra Vissieres, Lindsay M. Davison, Eric H. Farber-Eger, Quinn S. Wells, Quanhu Sheng, Sebastian Bergling, Sophia A Wild, Pierre Moulin, Jiancong Liang, Wayne J. English, Brandon Williams, Judith Knehr, Marc Altorfer, Alejandro Reyes, Johannes Voshol, Craig Mickanin, Dominic Hoepfner, Florian Nigsch, Mathias Frederiksen, Charles R. Flynn, Barna D. Fodor, Jonathan D. Brown, Christian Kolter

×

Mapping cell diversity and dynamics in inflammatory temporomandibular joint osteoarthritis with pain at single-cell resolution
Supawadee Jariyasakulroj, Yang Shu, Ziying Lin, Jingyi Chen, Qing Chang, Pao-Fen Ko, Jian-Fu Chen
Supawadee Jariyasakulroj, Yang Shu, Ziying Lin, Jingyi Chen, Qing Chang, Pao-Fen Ko, Jian-Fu Chen
View: Text | PDF

Mapping cell diversity and dynamics in inflammatory temporomandibular joint osteoarthritis with pain at single-cell resolution

  • Text
  • PDF
Abstract

Temporomandibular joint (TMJ) osteoarthritis with pain is a highly prevalent disorder affecting patients’ quality of life. A comprehensive understanding of cell type diversity and its dynamics in painful TMJ osteoarthritis (TMJOA) is lacking. Here, we utilized an inflammatory TMJOA mouse model via intra-articular injection of CFA. TMJOA mice exhibited cartilage remodeling, bone loss, synovitis, increased osteoarthritis (OA) score, and orofacial pain, recapitulating hallmark symptoms in patients. Single-cell transcriptomic profiling of the TMJ was performed in conjunction with mouse genetic labeling, tissue clearing, light sheet and confocal 3D imaging, multiplex RNAscope, and immunodetection. We visualized, reconstructed, and analyzed the distribution and density of nociceptive innervation of TMJ at single-axon levels. We systematically mapped the heterogeneity and anatomical position of blood endothelial cells, synovial fibroblasts, and immune cells, including Cx3cr1-positive barrier macrophages. Importantly, TMJOA mice exhibited enhanced neurovascular coupling, sublining fibroblast hyperplasia, inflammatory immune cell expansion, disrupted signaling-dependent cell-cell interaction, and a breakdown of the sandwich-like organization consisting of synovial barrier macrophages and fibroblasts. By utilizing a mouse model with combined TMJ pain history and OA, we reveal the cellular diversity, anatomical structure, and cell dynamics of the TMJ at single-cell resolution, which facilitate our understanding and potential targeting of TMJOA.

Authors

Supawadee Jariyasakulroj, Yang Shu, Ziying Lin, Jingyi Chen, Qing Chang, Pao-Fen Ko, Jian-Fu Chen

×

Molecular control of PDPNhi macrophage subset induction by ADAP as a host defense in sepsis
Pengchao Zhang, Xinning Wang, Xiaodong Yang, Hebin Liu
Pengchao Zhang, Xinning Wang, Xiaodong Yang, Hebin Liu
View: Text | PDF

Molecular control of PDPNhi macrophage subset induction by ADAP as a host defense in sepsis

  • Text
  • PDF
Abstract

Induction of podoplanin (PDPN) expression is a critical response of macrophages to LPS stimulation or bacterial infection in sepsis, but how this key process of TLR4-stimulated PDPN upregulation is regulated and the impact of PDPN expression on macrophage function remain elusive. Here, we determined how this process is regulated in vitro and in vivo. PDPN failed to be upregulated in TLR4 stimulated macrophages deficient in adhesion and degranulation-promoting adapter protein (ADAP), which could be rescued by the reconstitution of ADAP. A distinct PDPNhi peritoneal macrophage (PM) subset, which exhibited an M2-like phenotype and enhanced phagocytic activity, was generated in WT but not in ADAP-deficient septic mice. The blockade of PDPNhi PMs mimicked the effect of ADAP deficiency, which exacerbated sepsis. Mechanistically, BTK-mediated ADAP Y571 phosphorylation worked together with mTOR to converge on STAT3 activation for the transactivation of the PDPN promoter. Moreover, agonist activation of STAT3 profoundly potentiated the PDPNhi PM subset generation and alleviated sepsis severity in mice. Together, our findings reveal a mechanism whereby ADAP resets macrophage function by controlling the TLR4-induced upregulation of PDPN as a host innate immune defense during sepsis.

Authors

Pengchao Zhang, Xinning Wang, Xiaodong Yang, Hebin Liu

×

CD34hi subset of synovial fibroblasts contributes to fibrotic phenotype of human knee osteoarthritis
Junya Miyahara, Yasunori Omata, Ryota Chijimatsu, Hiroyuki Okada, Hisatoshi Ishikura, Junya Higuchi, Naohiro Tachibana, Kosei Nagata, Shoichiro Tani, Kenichi Kono, Kohei Kawaguchi, Ryota Yamagami, Hiroshi Inui, Shuji Taketomi, Yasuhide Iwanaga, Asuka Terashima, Fumiko Yano, Masahide Seki, Yutaka Suzuki, Roland Baron, Sakae Tanaka, Taku Saito
Junya Miyahara, Yasunori Omata, Ryota Chijimatsu, Hiroyuki Okada, Hisatoshi Ishikura, Junya Higuchi, Naohiro Tachibana, Kosei Nagata, Shoichiro Tani, Kenichi Kono, Kohei Kawaguchi, Ryota Yamagami, Hiroshi Inui, Shuji Taketomi, Yasuhide Iwanaga, Asuka Terashima, Fumiko Yano, Masahide Seki, Yutaka Suzuki, Roland Baron, Sakae Tanaka, Taku Saito
View: Text | PDF

CD34hi subset of synovial fibroblasts contributes to fibrotic phenotype of human knee osteoarthritis

  • Text
  • PDF
Abstract

Osteoarthritis (OA) shows various clinical manifestations depending on the status of its joint components. We aimed to identify the synovial cell subsets responsible for OA pathophysiology by comprehensive analyses of human synovium samples in single-cell resolution. Two distinct OA synovial tissue groups were classified by gene expression profiles in RNA-Seq: inflammatory and fibrotic. The inflammatory group exhibited high expression of inflammatory cytokines, histologically inflammatory infiltrate, and a more severe pain score. The fibrotic group showed higher expression of fibroblast growth factor (FGFs) and bone morphogenetic proteins (BMPs), showed histologically perivascular fibrosis, and showed a lower pain score. In single-cell RNA-Seq (scRNA-Seq) of synovial cells, MERTKloCD206lo macrophages and CD34hi fibroblasts were associated with the inflammatory and fibrotic groups, respectively. Among the 3 fibroblast subsets, CD34loTHY1lo and CD34loTHY1hi fibroblasts were influenced by synovial immune cells, whereas CD34hi fibroblasts were influenced by mural and endothelial cells. Particularly, in CD34hi fibroblast subsets, CD34hiCD70hi fibroblasts promoted proliferation of Tregs, potentially suppressing synovitis and protecting articular cartilage. Elucidation of the mechanisms underlying the regulation of these synovial cell subsets may lead to novel strategies for OA therapeutics.

Authors

Junya Miyahara, Yasunori Omata, Ryota Chijimatsu, Hiroyuki Okada, Hisatoshi Ishikura, Junya Higuchi, Naohiro Tachibana, Kosei Nagata, Shoichiro Tani, Kenichi Kono, Kohei Kawaguchi, Ryota Yamagami, Hiroshi Inui, Shuji Taketomi, Yasuhide Iwanaga, Asuka Terashima, Fumiko Yano, Masahide Seki, Yutaka Suzuki, Roland Baron, Sakae Tanaka, Taku Saito

×

Neutrophils initiate pro-inflammatory immune responses in early endometriosis lesion development
Taylor R. Wilson, Kurt R. Peterson, Stephanie A. Morris, Damaris Kuhnell, Susan Kasper, Katherine A. Burns
Taylor R. Wilson, Kurt R. Peterson, Stephanie A. Morris, Damaris Kuhnell, Susan Kasper, Katherine A. Burns
View: Text | PDF

Neutrophils initiate pro-inflammatory immune responses in early endometriosis lesion development

  • Text
  • PDF
Abstract

Endometriosis is a chronic gynecological disease that affects 1 in 10 reproductive-aged women. Most studies investigate established disease; however, the initiation and early events in endometriotic lesion development remain poorly understood. Our study used neutrophils from human menstrual effluent from subjects with and without endometriosis for immunophenotyping, and a mouse model of endometriosis and a mouse endometriosis cell line to determine the role of neutrophils in the initiating events of endometriosis, including attachment and survival of minced endometrial pieces. In menstrual effluent from women with endometriosis, the ratio of aged and pro-angiogenic neutrophils increased compared to controls, indicating a potentially permissive pro-inflammatory microenvironment. In our endometriosis mouse model, knocking-down neutrophil recruitment with α-CXCR2 into the peritoneum decreased endometrial tissue adhesion—supported by decreased levels of myeloperoxidase and neutrophil elastase in both developing lesions and peritoneal fluid. Fibrinogen was identified as the preferred substrate for endometrial cell adhesion in an in vitro adhesion assay and in developing lesions in vivo. Together, aged and pro-angiogenic neutrophils and their secretions likely promote attachment and formation of endometriotic lesions by releasing neutrophil extracellular traps and upregulating fibrinogen expression as a provisional matrix to establish attachment and survival in the development of endometriosis lesions.

Authors

Taylor R. Wilson, Kurt R. Peterson, Stephanie A. Morris, Damaris Kuhnell, Susan Kasper, Katherine A. Burns

×

Mindin/spondin-2 regulates fibroblast subpopulations through distinct Src family kinases during fibrogenesis
Sunny Kataria, Isha Rana, Krithika Badarinath, Rania F. Zaarour, Gaurav Kansagara, Sultan Ahmed, Abrar Rizvi, Dyuti Saha, Binita Dam, Abhik Dutta, Ravindra K. Zirmire, Edries Yousaf Hajam, Pankaj Kumar, Akash Gulyani, Colin Jamora
Sunny Kataria, Isha Rana, Krithika Badarinath, Rania F. Zaarour, Gaurav Kansagara, Sultan Ahmed, Abrar Rizvi, Dyuti Saha, Binita Dam, Abhik Dutta, Ravindra K. Zirmire, Edries Yousaf Hajam, Pankaj Kumar, Akash Gulyani, Colin Jamora
View: Text | PDF

Mindin/spondin-2 regulates fibroblast subpopulations through distinct Src family kinases during fibrogenesis

  • Text
  • PDF
Abstract

Fibrosis results from excessive extracellular matrix (ECM) deposition, causing tissue stiffening and organ dysfunction. Activated fibroblasts, central to fibrosis, exhibit increased migration, proliferation, contraction, and ECM production. However, it remains unclear if the same fibroblast performs all of the processes that fall under the umbrella term of "activation". Due to fibroblast heterogeneity in connective tissues, subpopulations with specific functions may operate under distinct regulatory controls. Using a transgenic mouse model of skin fibrosis, we found that Mindin (spondin-2), secreted by Snail transgenic keratinocytes, differentially regulates fibroblast subpopulations. Mindin promotes migration and inflammatory gene expression in SCA1+ dermal fibroblasts via Fyn kinase. In contrast, it enhances contractility and collagen production in papillary CD26+ fibroblasts through c-Src signalling. Moreover, in the context of the fibrotic microenvironment of the tumour stroma, we found that differential responses of resident fibroblasts subpopulations to Mindin extend to the generation of functionally heterogeneous cancer-associated fibroblasts (CAFs). This study unveils Mindin as a key orchestrator of dermal fibroblast heterogeneity, reshaping cellular dynamics and signalling diversity in the complex landscapes of skin fibrosis and cancer.

Authors

Sunny Kataria, Isha Rana, Krithika Badarinath, Rania F. Zaarour, Gaurav Kansagara, Sultan Ahmed, Abrar Rizvi, Dyuti Saha, Binita Dam, Abhik Dutta, Ravindra K. Zirmire, Edries Yousaf Hajam, Pankaj Kumar, Akash Gulyani, Colin Jamora

×

SARS-CoV-2 ORF8 drives osteoclastogenesis in preexisting immune-mediated inflammatory diseases
Ivonne Melano, Tamiris Azamor, Camila C.S. Caetano, Nikki M. Meyer, Chineme Onwubueke, Anabelle Visperas, Débora Familiar-Macedo, Gielenny M. Salem, Brandy-Lee Soos, Cassandra M. Calabrese, Youn Jung Choi, Shuyang Chen, Younho Choi, Xianfang Wu, Zilton Vasconcelos, Suzy A.A. Comhair, Karin Nielsen-Saines, Leonard H. Calabrese, M. Elaine Husni, Jae U. Jung, Nicolas S. Piuzzi, Suan-Sin Foo, Weiqiang Chen
Ivonne Melano, Tamiris Azamor, Camila C.S. Caetano, Nikki M. Meyer, Chineme Onwubueke, Anabelle Visperas, Débora Familiar-Macedo, Gielenny M. Salem, Brandy-Lee Soos, Cassandra M. Calabrese, Youn Jung Choi, Shuyang Chen, Younho Choi, Xianfang Wu, Zilton Vasconcelos, Suzy A.A. Comhair, Karin Nielsen-Saines, Leonard H. Calabrese, M. Elaine Husni, Jae U. Jung, Nicolas S. Piuzzi, Suan-Sin Foo, Weiqiang Chen
View: Text | PDF

SARS-CoV-2 ORF8 drives osteoclastogenesis in preexisting immune-mediated inflammatory diseases

  • Text
  • PDF
Abstract

Patients with immune-mediated inflammatory diseases (IMIDs) like rheumatoid arthritis (RA) are at higher risk for severe COVID-19 and long-term complications in bone health. Emerging clinical evidence demonstrated that SARS-CoV-2 infection reduces bone turnover and promotes bone loss, but the mechanism underlying worsened bone health remains elusive. This study sought to identify specific immune mediators that exacerbated preexisting IMIDs after SARS-CoV-2 exposure. Plasma samples from 4 groups were analyzed: healthy, IMID only, COVID-19 only, and COVID-19 + IMID. Using high-throughput multiplexed proteomics, we profiled 1,500 protein biomarkers and identified 148 unique biomarkers in COVID-19 patients with IMIDs, including elevated inflammatory cytokines (e.g., IL-17F) and bone resorption markers. Long-term circulating SARS-CoV-2 ORF8, a virulence factor for COVID-19, was detected in the COVID + IMID group. RA was one of the most common IMIDs in our study. ORF8 treatment of RA-derived human osteoblasts (RA-hOBs) increased levels of inflammatory (TNF, IL6, CCL2) and bone resorption (RANKL/osteoprotegerin ratio) markers compared with healthy controls. Supernatants from ORF8-treated RA-hOBs drove the differentiation of macrophages into osteoclast-like cells. These findings suggest that SARS-CoV-2 exposure can exacerbate IMIDs through ORF8-driven inflammation and osteoclastogenesis, highlighting potential therapeutic targets for managing COVID-19–induced bone pathologies.

Authors

Ivonne Melano, Tamiris Azamor, Camila C.S. Caetano, Nikki M. Meyer, Chineme Onwubueke, Anabelle Visperas, Débora Familiar-Macedo, Gielenny M. Salem, Brandy-Lee Soos, Cassandra M. Calabrese, Youn Jung Choi, Shuyang Chen, Younho Choi, Xianfang Wu, Zilton Vasconcelos, Suzy A.A. Comhair, Karin Nielsen-Saines, Leonard H. Calabrese, M. Elaine Husni, Jae U. Jung, Nicolas S. Piuzzi, Suan-Sin Foo, Weiqiang Chen

×

Transcriptomic profiling of thyroid eye disease orbital fat demonstrates differences in adipogenicity and IGF-1R pathway
Dong Won Kim, Soohyun Kim, Jeong Han, Karan Belday, Emily Li, Nicholas Mahoney, Seth Blackshaw, Fatemeh Rajaii
Dong Won Kim, Soohyun Kim, Jeong Han, Karan Belday, Emily Li, Nicholas Mahoney, Seth Blackshaw, Fatemeh Rajaii
View: Text | PDF

Transcriptomic profiling of thyroid eye disease orbital fat demonstrates differences in adipogenicity and IGF-1R pathway

  • Text
  • PDF
Abstract

Despite recent advances in the treatment of thyroid eye disease thyroid-related eye disease (TED), marked gaps remain in our understanding of the underlying molecular mechanisms, particularly concerning the insulin-like growth factor-1 receptor (IGF-1R) pathway. To dissect the pathophysiology of TED, we used single-nucleus RNA-Seq to analyze orbital fat specimens from both patients with TED and matched individuals acting as controls. The analysis demonstrated a marked increase in the proportion of fibroblasts transitioning to adipogenesis in the orbital fat of patients with TED compared with that in control patients. This was associated with diverse alterations in immune cell composition. Significant alterations in the IGF-1R signaling pathway were noted between TED specimens and those from control patients, indicating a potential pathological mechanism driven by IGF-1R signaling abnormalities. Additionally, our data showed that linsitinib, a small-molecule inhibitor of IGF-1R, effectively reduced adipogenesis in TED orbital fibroblasts in vitro, suggesting its potential utility as a therapeutic agent. Our findings reveal that, beyond immune dysfunction, abnormal IGF-1R signaling leading to enhanced adipogenesis is a crucial pathogenic mechanism in TED.

Authors

Dong Won Kim, Soohyun Kim, Jeong Han, Karan Belday, Emily Li, Nicholas Mahoney, Seth Blackshaw, Fatemeh Rajaii

×

Airway-resident memory CD4 T-cell activation accelerates antigen presentation and T-cell priming in draining lymph nodes
Caroline M. Finn, Kunal Dhume, Eugene Baffoe, Lauren A. Kimball, Tara M. Strutt, K. Kai McKinstry
Caroline M. Finn, Kunal Dhume, Eugene Baffoe, Lauren A. Kimball, Tara M. Strutt, K. Kai McKinstry
View: Text | PDF

Airway-resident memory CD4 T-cell activation accelerates antigen presentation and T-cell priming in draining lymph nodes

  • Text
  • PDF
Abstract

Specialized memory CD4 T cells that reside long-term within tissues are critical components of immunity at portals of pathogen entry. In the lung, such tissue-resident memory (TRM) cells are activated rapidly after infection and promote local inflammation to control pathogen levels before circulating T cells can respond. However, optimal clearance of Influenza A virus can require TRM and responses by other virus-specific T cells that reach the lung only several days after their activation in secondary lymphoid organs. Whether local CD4 TRM sentinel activity can impact the efficiency of T cell activation in secondary lymphoid organs is not clear. Here, we found that recognition of antigen by influenza -primed TRM in the airways promotes more rapid migration of highly activated antigen-bearing dendritic cells to the draining lymph nodes. This in turn accelerated the priming of naive T cells recognizing the same antigen, resulting in newly activated effector T cells reaching the lungs earlier than in mice not harboring TRM. Our findings thus reveal a circuit linking local and regional immunity whereby antigen recognition by TRM improves effector T cell recruitment to the site of infection though enhancing the efficiency of antigen presentation in the draining lymph node.

Authors

Caroline M. Finn, Kunal Dhume, Eugene Baffoe, Lauren A. Kimball, Tara M. Strutt, K. Kai McKinstry

×
  • ← Previous
  • 1
  • 2
  • …
  • 7
  • 8
  • 9
  • …
  • 47
  • 48
  • Next →

No posts were found with this tag.

Advertisement

Copyright © 2026 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts