The lymphatic system plays crucial roles in tissue homeostasis, lipid absorption, and immune cell trafficking. Although lymphatic valves ensure unidirectional lymph flows, the flow itself controls lymphatic valve formation. Here, we demonstrate that a mechanically activated ion channel Piezo1 senses oscillating shear stress (OSS) and incorporates the signal into the genetic program controlling lymphatic valve development and maintenance. Time-controlled deletion of Piezo1 using a pan-endothelial Cre driver (Cdh5[PAC]-CreERT2) or lymphatic-specific Cre driver (Prox1-CreERT2) equally inhibited lymphatic valve formation in newborn mice. Furthermore, Piezo1 deletion in adult lymphatics caused substantial lymphatic valve degeneration. Piezo1 knockdown in cultured lymphatic endothelial cells (LECs) largely abrogated the OSS-induced upregulation of the lymphatic valve signature genes. Conversely, ectopic Piezo1 overexpression upregulated the lymphatic valve genes in the absence of OSS. Remarkably, activation of Piezo1 using chemical agonist Yoda1 not only accelerated lymphatic valve formation in animals, but also triggered upregulation of some lymphatic valve genes in cultured LECs without exposure to OSS. In summary, our studies together demonstrate that Piezo1 is the force sensor in the mechanotransduction pathway controlling lymphatic valve development and maintenance, and Piezo1 activation is a potentially novel therapeutic strategy for congenital and surgery-associated lymphedema.
Dongwon Choi, Eunkyung Park, Eunson Jung, Boksik Cha, Somin Lee, James Yu, Paul M. Kim, Sunju Lee, Yeo Jin Hong, Chester J. Koh, Chang-Won Cho, Yifan Wu, Noo Li Jeon, Alex K. Wong, Laura Shin, S. Ram Kumar, Ivan Bermejo-Moreno, R. Sathish Srinivasan, Il-Taeg Cho, Young-Kwon Hong
Paracrine interactions between pancreatic islet cells have been proposed as a mechanism to regulate hormone secretion and glucose homeostasis. Here, we demonstrate the importance of proglucagon-derived peptides (PGDPs) for α to β cell communication and control of insulin secretion. Signaling through this system occurs through both the glucagon-like peptide receptor (Glp1r) and glucagon receptor (Gcgr). Loss of PGDPs, or blockade of their receptors, decreases insulin secretion in response to both metabolic and nonmetabolic stimulation of mouse and human islets. This effect is due to reduced β cell cAMP and affects the quantity but not dynamics of insulin release, indicating that PGDPs dictate the magnitude of insulin output in an isolated islet. In healthy mice, additional factors that stimulate cAMP can compensate for loss of PGDP signaling; however, input from α cells is essential to maintain glucose tolerance during the metabolic stress induced by high-fat feeding. These findings demonstrate an essential role for α cell regulation of β cells, raising the possibility that abnormal paracrine signaling contributes to impaired insulin secretion in diabetes. Moreover, these findings support reconsideration of the role for α cells in postprandial glucose control.
Megan E. Capozzi, Berit Svendsen, Sara E. Encisco, Sophie L. Lewandowski, Mackenzie D. Martin, Haopeng Lin, Justin L. Jaffe, Reilly W. Coch, Jonathan M. Haldeman, Patrick E. MacDonald, Matthew J. Merrins, David A. D’Alessio, Jonathan E. Campbell
β-2 Microglobulin (β2M) is a molecular chaperone for the major histocompatibility class I (MHC I) complex, hemochromatosis factor protein (HFE), and the neonatal Fc receptor (FcRn), but β2M may also have less understood chaperone-independent functions. Elevated plasma β2M has a direct role in neurocognitive decline and is a risk factor for adverse cardiovascular events. β2M mRNA is present in platelets at very high levels, and β2M is part of the activated platelet releasate. In addition to their more well-studied thrombotic functions, platelets are important immune regulatory cells that release inflammatory molecules and contribute to leukocyte trafficking, activation, and differentiation. We have now found that platelet-derived β2M is a mediator of monocyte proinflammatory differentiation through noncanonical TGFβ receptor signaling. Circulating monocytes from mice lacking β2M only in platelets (Plt-β2M–/–) had a more proreparative monocyte phenotype, in part dependent on increased platelet-derived TGFβ signaling in the absence of β2M. Using a mouse myocardial infarction (MI) model, Plt-β2M–/– mice had limited post-MI proinflammatory monocyte responses and, instead, demonstrated early proreparative monocyte differentiation, profibrotic myofibroblast responses, and a rapid decline in heart function compared with WT mice. These data demonstrate a potentially novel chaperone-independent, monocyte phenotype–regulatory function for platelet β2M and that platelet-derived 2M and TGFβ have opposing roles in monocyte differentiation that may be important in tissue injury responses.
Zachary T. Hilt, Daphne N. Pariser, Sara K. Ture, Amy Mohan, Pearl Quijada, Akua A. Asante, Scott J. Cameron, Julie A. Sterling, Alyssa R. Merkel, Andrew L. Johanson, Jermaine L. Jenkins, Eric M. Small, Kathleen E. McGrath, James Palis, Michael R. Elliott, Craig N. Morrell
Molecular profiling of prostate cancer with liquid biopsies, such as circulating tumor cells (CTCs) and cell-free nucleic acid analysis, yields informative yet distinct data sets. Additional insights may be gained by simultaneously interrogating multiple liquid biopsy components to construct a more comprehensive molecular disease profile. We conducted an initial proof-of-principle study aimed at piloting this multiparametric approach. Peripheral blood samples from men with metastatic castrate-resistant prostate cancer were analyzed simultaneously for CTC enumeration, single-cell copy number variations, CTC DNA and matched cell-free DNA mutations, and plasma cell-free RNA levels of androgen receptor (AR) and AR splice variant (ARV7). In addition, liquid biopsies were compared with matched tumor profiles when available, and a second liquid biopsy was drawn and analyzed at disease progression in a subset of patients. In this manner, multiparametric liquid biopsy profiles were successfully generated for each patient and time point, demonstrating the feasibility of this approach and highlighting shared as well as unique cancer-relevant alterations. With further refinement and validation in large cohorts, multiparametric liquid biopsies can optimally integrate disparate but clinically informative data sets and maximize their utility for molecularly directed, real-time patient management.
Emmanuelle Hodara, Gareth Morrison, Alexander Cunha, Daniel Zainfeld, Tong Xu, Yucheng Xu, Paul W. Dempsey, Paul C. Pagano, Farideh Bischoff, Aditi Khurana, Samuel Koo, Marc Ting, Philip D. Cotter, Mathew W. Moore, Shelly Gunn, Joshua Usher, Shahrooz Rabizadeh, Peter Danenberg, Kathleen Danenberg, John Carpten, Tanya Dorff, David Quinn, Amir Goldkorn
Human adipose cells cannot secrete endogenous PPARγ ligands and are dependent on unknown exogenous sources. We postulated that the adipose tissue microvascular endothelial cells (aMVECs) cross-talk with the adipose cells for fatty acid (FA) transport and storage and also may secrete PPARγ ligands. We isolated aMVECs from human subcutaneous adipose tissue and showed that in these cells, but not in (pre)adipocytes from the same donors, exogenous FAs increased cellular PPARγ activation and markedly increased FA transport and the transporters FABP4 and CD36. Importantly, aMVECs only accumulated small lipid droplets and could not be differentiated to adipose cells and are not adipose precursor cells. FA exchange between aMVECs and adipose cells was bidirectional, and FA-induced PPARγ activation in aMVECs was dependent on functional adipose triglyceride lipase (ATGL) protein while deleting hormone-sensitive lipase in aMVECs had no effect. aMVECs also released lipids to the medium, which activated PPARγ in reporter cells as well as in adipose cells in coculture experiments, and this positive cross-talk was also dependent on functional ATGL in aMVECs. In sum, aMVECs are highly specialized endothelial cells, cannot be differentiated to adipose cells, are adapted to regulating lipid transport and secreting lipids that activate PPARγ, and thus, regulate adipose cell function.
Silvia Gogg, Annika Nerstedt, Jan Boren, Ulf Smith
Atopic dermatitis (AD) is a complex inflammatory skin disease mediated by immune cells of both adaptive and innate types. Among them, CD4+ Th cells are one of major players of AD pathogenesis. Although the pathogenic role of Th2 cells has been well characterized, Th17/Th22 cells are also implicated in the pathogenesis of AD. However, the molecular mechanisms underlying pathogenic immune responses in AD remain unclear. We sought to investigate how the defect in the AD susceptibility gene, Ets1, is involved in AD pathogenesis in human and mice and its clinical relevance in disease severity by identifying Ets1 target genes and binding partners. Consistent with the decrease in ETS1 levels in severe AD patients and the experimental AD-like skin inflammation model, T cell–specific Ets1-deficient mice (Ets1ΔdLck) developed severe AD-like symptoms with increased pathogenic Th cell responses. A T cell–intrinsic increase of gp130 expression upon Ets1 deficiency promotes the gp130-mediated IL-6 signaling pathway, thereby leading to the development of severe AD-like symptoms. Functional blocking of gp130 by selective inhibitor SC144 ameliorated the disease pathogenesis by reducing pathogenic Th cell responses. Our results reveal a protective role of Ets1 in restricting pathogenic Th cell responses and suggest a potential therapeutic target for AD treatment.
Choong-Gu Lee, Ho-Keun Kwon, Hyeji Kang, Young Kim, Jong Hee Nam, Young Ho Won, Sunhee Park, Taemook Kim, Keunsoo Kang, Dipayan Rudra, Chang-Duk Jun, Zee Yong Park, Sin-Hyeog Im
Genomic studies revealed the existence of health- and acne-associated P. acnes strains and suggested novel approaches for broadening understanding of acne vulgaris. However, clinical association of P. acnes with disease or health has yet to be corroborated experimentally. Current animal models of acne do not closely mimic human disease and have unclear translational value. We have developed a murine model of acne by combining P. acnes inoculation with topical application of a synthetic human sebum. We showed that human sebum promoted persistence of intradermally injected P. acnes with little loss of viability after 1 week and permitted use of more physiologic inoculums. Application of acne-associated P. acnes RT4/5 strains led to development of moderate to severe skin pathology compared with application of health-associated type II P. acnes strains (RT2/6). RT4/5 P. acnes strains uniformly induced higher levels of KC (IL-8), IL-1α, IL-1β, and IL-6 in vitro and in vivo compared with type II P. acnes strains. Overall, our data provide immunopathologic corroboration of health and disease association of clinical P. acnes strains and inform on a platform to query putative virulence factors uncovered by genomic studies.
Stacey L. Kolar, Chih-Ming Tsai, Juan Torres, Xuemo Fan, Huiying Li, George Y. Liu
The satiety effects and metabolic actions of cholecystokinin (CCK) have been recognized as potential therapeutic targets in obesity for decades. We identified a potentially novel Ca2+-activated chloride (Cl–) current (CaCC) that is induced by CCK in intestinal vagal afferents of nodose neurons. The CaCC subunit Anoctamin 2 (Ano2/TMEM16B) is the dominant contributor to this current. Its expression is reduced, as is CCK current activity in obese mice on a high-fat diet (HFD). Reduced expression of TMEM16B in the heterozygote KO of the channel in sensory neurons results in an obese phenotype with a loss of CCK sensitivity in intestinal nodose neurons, a loss of CCK-induced satiety, and metabolic changes, including decreased energy expenditure. The effect on energy expenditure is further supported by evidence in rats showing that CCK enhances sympathetic nerve activity and thermogenesis in brown adipose tissue, and these effects are abrogated by a HFD and vagotomy. Our findings reveal that Ano2/TMEM16B is a Ca2+-activated chloride channel in vagal afferents of nodose neurons and a major determinant of CCK-induced satiety, body weight control, and energy expenditure, making it a potential therapeutic target in obesity.
Runping Wang, Yongjun Lu, Michael Z. Cicha, Madhu V. Singh, Christopher J. Benson, Christopher J. Madden, Mark W. Chapleau, François M. Abboud
Treg differentiation, maintenance, and function are controlled by the transcription factor FoxP3, which can be destabilized under inflammatory or other pathological conditions. Tregs can be destabilized under inflammatory or other pathological conditions, but the underlying mechanisms are not fully defined. Herein, we show that inflammatory cytokines induce ER stress response, which destabilizes Tregs by suppressing FoxP3 expression, suggesting a critical role of the ER stress response in maintaining Treg stability. Indeed, genetic deletion of Hrd1, an E3 ligase critical in suppressing the ER stress response, leads to elevated expression of ER stress–responsive genes in Treg and largely diminishes Treg suppressive functions under inflammatory condition. Mice with Treg-specific ablation of Hrd1 displayed massive multiorgan lymphocyte infiltration, body weight loss, and the development of severe small intestine inflammation with aging. At the molecular level, the deletion of Hrd1 led to the activation of both the ER stress sensor IRE1α and its downstream MAPK p38. Pharmacological suppression of IRE1α kinase, but not its endoribonuclease activity, diminished the elevated p38 activation and fully rescued the stability of Hrd1-null Tregs. Taken together, our studies reveal ER stress response as a previously unappreciated mechanism underlying Treg instability and that Hrd1 is crucial for maintaining Treg stability and functions through suppressing the IRE1α-mediated ER stress response.
Yuanming Xu, Johanna Melo-Cardenas, Yana Zhang, Isabella Gau, Juncheng Wei, Elena Montauti, Yusi Zhang, Beixue Gao, Hongjian Jin, Zhaolin Sun, Sang-Myeong Lee, Deyu Fang
Pompe disease is a rare inherited disorder of lysosomal glycogen metabolism due to acid α-glucosidase (GAA) deficiency. Enzyme replacement therapy (ERT) using alglucosidase alfa, a recombinant human GAA (rhGAA), is the only approved treatment for Pompe disease. Although alglucosidase alfa has provided clinical benefits, its poor targeting to key disease-relevant skeletal muscles results in suboptimal efficacy. We are developing an rhGAA, ATB200 (Amicus proprietary rhGAA), with high levels of mannose-6-phosphate that are required for efficient cellular uptake and lysosomal trafficking. When administered in combination with the pharmacological chaperone AT2221 (miglustat), which stabilizes the enzyme and improves its pharmacokinetic properties, ATB200/AT2221 was substantially more potent than alglucosidase alfa in a mouse model of Pompe disease. The new investigational therapy is more effective at reversing the primary abnormality — intralysosomal glycogen accumulation — in multiple muscles. Furthermore, unlike the current standard of care, ATB200/AT2221 dramatically reduces autophagic buildup, a major secondary defect in the diseased muscles. The reversal of lysosomal and autophagic pathologies leads to improved muscle function. These data demonstrate the superiority of ATB200/AT2221 over the currently approved ERT in the murine model.
Su Xu, Yi Lun, Michelle Frascella, Anadina Garcia, Rebecca Soska, Anju Nair, Abdul S. Ponery, Adriane Schilling, Jessie Feng, Steven Tuske, Maria Cecilia Della Valle, José A. Martina, Evelyn Ralston, Russell Gotschall, Kenneth J. Valenzano, Rosa Puertollano, Hung V. Do, Nina Raben, Richie Khanna
No posts were found with this tag.