Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

  • 4,186 Articles
  • 0 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 300
  • 301
  • 302
  • …
  • 418
  • 419
  • Next →
Conditional deletion of smooth muscle Cullin-3 causes severe progressive hypertension
Larry N. Agbor, Anand R. Nair, Jing Wu, Ko-Ting Lu, Deborah R. Davis, Henry L. Keen, Frederick W. Quelle, James A. McCormick, Jeffrey D. Singer, Curt D. Sigmund
Larry N. Agbor, Anand R. Nair, Jing Wu, Ko-Ting Lu, Deborah R. Davis, Henry L. Keen, Frederick W. Quelle, James A. McCormick, Jeffrey D. Singer, Curt D. Sigmund
View: Text | PDF

Conditional deletion of smooth muscle Cullin-3 causes severe progressive hypertension

  • Text
  • PDF
Abstract

Patients with mutations in Cullin-3 (CUL3) exhibit severe early-onset hypertension, but the contribution of the smooth muscle remains unclear. Conditional genetic ablation of CUL3 in vascular smooth muscle (S-CUL3KO) causes progressive impairment in response to NO, rapid development of severe hypertension, and increased arterial stiffness. Loss of CUL3 in primary aortic smooth muscle cells or aorta resulted in decreased expression of the NO receptor soluble guanylate cyclase (sGC), a marked reduction in cGMP production, and impaired vasodilation to cGMP analogs. Vasodilation responses to a selective large-conductance Ca2+-activated K+ channel activator were normal, suggesting that downstream signals that promote smooth muscle–dependent relaxation remained intact. We conclude that smooth muscle–specific CUL3 ablation impairs both cGMP production and cGMP responses and that loss of CUL3 function selectively in smooth muscle is sufficient to cause severe hypertension by interfering with the NO/sGC/cGMP pathway. Our study provides evidence that vascular smooth muscle CUL3 is a major regulator of BP. CUL3 mutations cause severe vascular dysfunction, arterial stiffness, and hypertension due to defects in vascular smooth muscle.

Authors

Larry N. Agbor, Anand R. Nair, Jing Wu, Ko-Ting Lu, Deborah R. Davis, Henry L. Keen, Frederick W. Quelle, James A. McCormick, Jeffrey D. Singer, Curt D. Sigmund

×

Transcriptome profiling reveals Th2 bias and identifies endogenous itch mediators in poison ivy contact dermatitis
Boyi Liu, Yan Tai, Boyu Liu, Ana I. Caceres, Chengyu Yin, Sven-Eric Jordt
Boyi Liu, Yan Tai, Boyu Liu, Ana I. Caceres, Chengyu Yin, Sven-Eric Jordt
View: Text | PDF

Transcriptome profiling reveals Th2 bias and identifies endogenous itch mediators in poison ivy contact dermatitis

  • Text
  • PDF
Abstract

In the United States, poison ivy is the most common naturally occurring allergen that causes allergic contact dermatitis (ACD). The immune and pruritic mechanisms associated with poison ivy ACD remain largely unexplored. Here, we compared skin whole transcriptomes and itch mediator levels in mouse ACD models induced by the poison ivy allergen, urushiol, and the synthetic allergen, oxazolone. The urushiol model produced a Th2-biased immune response and scratching behavior, resembling findings in poison ivy ACD patients. Urushiol-challenged skin contained elevated levels of the cytokine thymic stromal lymphopoietin (TSLP), a T cell regulator and itch mediator, and pruritogenic serotonin (5-HT) and endothelin (ET-1) but not substance P (SP) or histamine. The oxazolone model generated a mixed Th1/Th2 response associated with increased levels of SP, 5-HT, and ET-1 but not TSLP or histamine. Injections of a TSLP monoclonal neutralizing antibody or serotonergic or endothelin inhibitors, but not SP inhibitors or antihistamines, reduced scratching behaviors in urushiol-challenged mice. Our findings suggest that the mouse urushiol model may serve as a translational model of human poison ivy ACD. Inhibiting signaling by TSLP and other cytokines may represent alternatives to the standard steroid/antihistamine regimen for steroid-resistant or -intolerant patients and in exaggerated systemic responses to poison ivy.

Authors

Boyi Liu, Yan Tai, Boyu Liu, Ana I. Caceres, Chengyu Yin, Sven-Eric Jordt

×

NTCP deficiency in mice protects against obesity and hepatosteatosis
Joanne M. Donkers, Sander Kooijman, Davor Slijepcevic, Roni F. Kunst, Reinout L.P. Roscam Abbing, Lizette Haazen, Dirk R. de Waart, Johannes H.M. Levels, Kristina Schoonjans, Patrick C.N. Rensen, Ronald P.J. Oude Elferink, Stan F.J. van de Graaf
Joanne M. Donkers, Sander Kooijman, Davor Slijepcevic, Roni F. Kunst, Reinout L.P. Roscam Abbing, Lizette Haazen, Dirk R. de Waart, Johannes H.M. Levels, Kristina Schoonjans, Patrick C.N. Rensen, Ronald P.J. Oude Elferink, Stan F.J. van de Graaf
View: Text | PDF

NTCP deficiency in mice protects against obesity and hepatosteatosis

  • Text
  • PDF
Abstract

Bile acids play a major role in the regulation of lipid and energy metabolism. Here we propose the hepatic bile acid uptake transporter Na+ taurocholate cotransporting polypeptide (NTCP) as a target to prolong postprandial bile acid elevations in plasma. Reducing hepatic clearance of bile acids from plasma by genetic deletion of NTCP moderately increased plasma bile acid levels, reduced diet-induced obesity, attenuated hepatic steatosis, and lowered plasma cholesterol levels. NTCP and G protein–coupled bile acid receptor–double KO (TGR5–double KO) mice were equally protected against diet-induced obesity as NTCP–single KO mice. NTCP-KO mice displayed decreased intestinal fat absorption and a trend toward higher fecal energy output. Furthermore, NTCP deficiency was associated with an increased uncoupled respiration in brown adipose tissue, leading to increased energy expenditure. We conclude that targeting NTCP-mediated bile acid uptake can be a novel approach to treat obesity and obesity-related hepatosteatosis by simultaneously dampening intestinal fat absorption and increasing energy expenditure.

Authors

Joanne M. Donkers, Sander Kooijman, Davor Slijepcevic, Roni F. Kunst, Reinout L.P. Roscam Abbing, Lizette Haazen, Dirk R. de Waart, Johannes H.M. Levels, Kristina Schoonjans, Patrick C.N. Rensen, Ronald P.J. Oude Elferink, Stan F.J. van de Graaf

×

S100a4-Cre–mediated deletion of Ptch1 causes hypogonadotropic hypogonadism: role of pituitary hematopoietic cells in endocrine regulation
Yi Athena Ren, Teresa Monkkonen, Michael T. Lewis, Daniel J. Bernard, Helen C. Christian, Carolina J. Jorgez, Joshua A. Moore, John D. Landua, Haelee M. Chin, Weiqin Chen, Swarnima Singh, Ik Sun Kim, Xiang H.F. Zhang, Yan Xia, Kevin J. Phillips, Harry MacKay, Robert A. Waterland, M. Cecilia Ljungberg, Pradip K. Saha, Sean M. Hartig, Tatiana Fiordelisio Coll, JoAnne S. Richards
Yi Athena Ren, Teresa Monkkonen, Michael T. Lewis, Daniel J. Bernard, Helen C. Christian, Carolina J. Jorgez, Joshua A. Moore, John D. Landua, Haelee M. Chin, Weiqin Chen, Swarnima Singh, Ik Sun Kim, Xiang H.F. Zhang, Yan Xia, Kevin J. Phillips, Harry MacKay, Robert A. Waterland, M. Cecilia Ljungberg, Pradip K. Saha, Sean M. Hartig, Tatiana Fiordelisio Coll, JoAnne S. Richards
View: Text | PDF

S100a4-Cre–mediated deletion of Ptch1 causes hypogonadotropic hypogonadism: role of pituitary hematopoietic cells in endocrine regulation

  • Text
  • PDF
Abstract

Hormones produced by the anterior pituitary gland regulate an array of important physiological functions, but the causes of pituitary hormone disorders are not fully understood. Herein we report that genetically engineered mice with deletion of the hedgehog signaling receptor PATCHED1 (Ptch1) by S100a4 promoter–driven Cre recombinase (S100a4-Cre;Ptch1fl/fl mutants) exhibit adult-onset hypogonadotropic hypogonadism and multiple pituitary hormone disorders. During the transition from puberty to adulthood, S100a4-Cre;Ptch1fl/fl mice of both sexes develop hypogonadism coupled with reduced gonadotropin levels. Their pituitary glands also display severe structural and functional abnormalities, as revealed by transmission electron microscopy and expression of key genes regulating pituitary endocrine functions. S100a4-Cre activity in the anterior pituitary gland is restricted to CD45+ cells of hematopoietic origin, including folliculo-stellate cells and other immune cell types, causing sex-specific changes in the expression of genes regulating the local microenvironment of the anterior pituitary. These findings provide in vivo evidence for the importance of pituitary hematopoietic cells in regulating fertility and endocrine function, in particular during sexual maturation and likely through sexually dimorphic mechanisms. These findings support a previously unrecognized role of hematopoietic cells in causing hypogonadotropic hypogonadism and provide inroads into the molecular and cellular basis for pituitary hormone disorders in humans.

Authors

Yi Athena Ren, Teresa Monkkonen, Michael T. Lewis, Daniel J. Bernard, Helen C. Christian, Carolina J. Jorgez, Joshua A. Moore, John D. Landua, Haelee M. Chin, Weiqin Chen, Swarnima Singh, Ik Sun Kim, Xiang H.F. Zhang, Yan Xia, Kevin J. Phillips, Harry MacKay, Robert A. Waterland, M. Cecilia Ljungberg, Pradip K. Saha, Sean M. Hartig, Tatiana Fiordelisio Coll, JoAnne S. Richards

×

Targetable mechanisms driving immunoevasion of persistent senescent cells link chemotherapy-resistant cancer to aging
Denise P. Muñoz, Steven M. Yannone, Anneleen Daemen, Yu Sun, Funda Vakar-Lopez, Misako Kawahara, Adam M. Freund, Francis Rodier, Jennifer D. Wu, Pierre-Yves Desprez, David H. Raulet, Peter S. Nelson, Laura J. van ’t Veer, Judith Campisi, Jean-Philippe Coppé
Denise P. Muñoz, Steven M. Yannone, Anneleen Daemen, Yu Sun, Funda Vakar-Lopez, Misako Kawahara, Adam M. Freund, Francis Rodier, Jennifer D. Wu, Pierre-Yves Desprez, David H. Raulet, Peter S. Nelson, Laura J. van ’t Veer, Judith Campisi, Jean-Philippe Coppé
View: Text | PDF

Targetable mechanisms driving immunoevasion of persistent senescent cells link chemotherapy-resistant cancer to aging

  • Text
  • PDF
Abstract

Cellular senescence is a tumor-suppressive mechanism that can paradoxically contribute to aging pathologies. Despite evidence of immune clearance in mouse models, it is not known how senescent cells (SnCs) persist and accumulate with age or in tumors in individuals. Here, we identify cooperative mechanisms that orchestrate the immunoevasion and persistence of normal and cancer human SnCs through extracellular targeting of natural killer receptor signaling. Damaged SnCs avoided immune recognition through MMP-dependent shedding of NKG2D ligands reinforced via paracrine suppression of NKG2D receptor–mediated immunosurveillance. These coordinated immunoediting processes were evident in residual, drug-resistant tumors from cohorts of more than 700 prostate and breast cancer patients treated with senescence-inducing genotoxic chemotherapies. Unlike in mice, these reversible senescence subversion mechanisms were independent of p53/p16 and exacerbated in oncogenic RAS-induced senescence. Critically, the p16INK4A tumor suppressor could disengage the senescence growth arrest from the damage-associated immune senescence program, which was manifest in benign nevus lesions, where indolent SnCs accumulated over time and preserved a non-proinflammatory tissue microenvironment maintaining NKG2D-mediated immunosurveillance. Our study shows how subpopulations of SnCs elude immunosurveillance and reveals potential secretome-targeted therapeutic strategies to selectively eliminate — and restore the clearance of — the detrimental SnCs that actively persist after chemotherapy and accumulate at sites of aging pathologies.

Authors

Denise P. Muñoz, Steven M. Yannone, Anneleen Daemen, Yu Sun, Funda Vakar-Lopez, Misako Kawahara, Adam M. Freund, Francis Rodier, Jennifer D. Wu, Pierre-Yves Desprez, David H. Raulet, Peter S. Nelson, Laura J. van ’t Veer, Judith Campisi, Jean-Philippe Coppé

×

Human induced pluripotent stem cell–derived extracellular vesicles reduce hepatic stellate cell activation and liver fibrosis
Davide Povero, Eva M. Pinatel, Aleksandra Leszczynska, Nidhi P. Goyal, Takahiro Nishio, Jihoon Kim, David Kneiber, Lucas de Araujo Horcel, Akiko Eguchi, Paulina M. Ordonez, Tatiana Kisseleva, Ariel E. Feldstein
Davide Povero, Eva M. Pinatel, Aleksandra Leszczynska, Nidhi P. Goyal, Takahiro Nishio, Jihoon Kim, David Kneiber, Lucas de Araujo Horcel, Akiko Eguchi, Paulina M. Ordonez, Tatiana Kisseleva, Ariel E. Feldstein
View: Text | PDF

Human induced pluripotent stem cell–derived extracellular vesicles reduce hepatic stellate cell activation and liver fibrosis

  • Text
  • PDF
Abstract

Progression of fibrosis and the development of cirrhosis are responsible for the liver-related morbidity and mortality associated with chronic liver diseases. There is currently a great unmet need for effective antifibrotic strategies. Stem cells play a central role in wound-healing responses to restore liver homeostasis following injury. Here we tested the hypothesis that extracellular vesicles (EVs) isolated from induced pluripotent stem cells (iPSCs) modulate hepatic stellate cell (HSC) activation and may have antifibrotic effects. Human iPSCs were generated by reprogramming primary skin fibroblasts. EVs were isolated by differential centrifugation, quantified by flow cytometry (FACS), and characterized by dynamic light scattering and transmission electron microscopy (TEM). Primary human HSCs were activated with TGF-β (10 ng/mL) and exposed to iPSC-EVs. Efficacy of iPSC-EVs was tested on HSCs in vitro and in 2 murine models of liver injury (CCl4 and bile duct ligation). Characterization of iPSC-derived EVs by flow cytometry identified a large population of EVs released by iPSCs, primarily with a diameter of 300 nm, that could be visualized by TEM as round, cup-shaped objects. Fluorescent tracing assays detected iPSC-EVs in HSC cytosol after a short incubation, and EV uptake by HSCs resulted in both decrease of profibrogenic markers α–smooth muscle actin, CollagenIα1, fibronectin, and tissue inhibitor of metalloproteinases–1 and HSC profibrogenic responses, such as chemotaxis and proliferation. Genomics analyses of iPSC-EV miRNA cargo revealed 22 highly expressed miRNAs, among which miR-92a-3p was the most abundant. Transcriptome analysis identified 60 genes downmodulated and 235 upregulated in TGF-β–primed HSCs in the presence or absence of iPSC-EVs. Intravenous injection of iPSC-EVs in CCl4-induced and bile duct ligation–induced liver fibrosis resulted in antifibrotic effects at protein and gene levels. Results of this study identify iPSC-EVs as a potentially novel antifibrotic approach that may reduce or reverse liver fibrosis in patients with chronic liver disease.

Authors

Davide Povero, Eva M. Pinatel, Aleksandra Leszczynska, Nidhi P. Goyal, Takahiro Nishio, Jihoon Kim, David Kneiber, Lucas de Araujo Horcel, Akiko Eguchi, Paulina M. Ordonez, Tatiana Kisseleva, Ariel E. Feldstein

×

Natural single-nucleotide deletion in chymotrypsinogen C gene increases severity of secretagogue-induced pancreatitis in C57BL/6 mice
Andrea Geisz, Zsanett Jancsó, Balázs Csaba Németh, Eszter Hegyi, Miklós Sahin-Tóth
Andrea Geisz, Zsanett Jancsó, Balázs Csaba Németh, Eszter Hegyi, Miklós Sahin-Tóth
View: Text | PDF

Natural single-nucleotide deletion in chymotrypsinogen C gene increases severity of secretagogue-induced pancreatitis in C57BL/6 mice

  • Text
  • PDF
Abstract

Genetic susceptibility to chronic pancreatitis in humans is frequently associated with mutations that increase activation of the digestive protease trypsin. Intrapancreatic trypsin activation is an early event in experimental acute pancreatitis in rodents, suggesting that trypsin is a key driver of pathology. In contrast with trypsin, the pancreatic protease chymotrypsin serves a protective function by mitigating trypsin activation through degradation. In humans, loss-of-function mutations in chymotrypsin C (CTRC) are common risk factors for chronic pancreatitis; however, the pathogenic effect of CTRC deficiency has not been corroborated in animal models yet. Here we report that C57BL/6 mice that are widely used for genetic manipulations do not express functional CTRC because of a single-nucleotide deletion in exon 2 of the Ctrc gene. We restored a functional Ctrc locus in C57BL/6N mice and demonstrated that in the Ctrc+ strain, the severity of cerulein-induced experimental acute and chronic pancreatitis was significantly ameliorated. Improved disease parameters were associated with reduced intrapancreatic trypsin activation, suggesting a causal link between CTRC-mediated trypsinogen degradation and protection against pancreatitis. Taken together with prior human genetic and biochemical studies, the observations provide conclusive evidence for the protective role of CTRC against pancreatitis.

Authors

Andrea Geisz, Zsanett Jancsó, Balázs Csaba Németh, Eszter Hegyi, Miklós Sahin-Tóth

×

Patient mutations linked to arrhythmogenic cardiomyopathy enhance calpain-mediated desmoplakin degradation
Ronald Ng, Heather Manring, Nikolaos Papoutsidakis, Taylor Albertelli, Nicole Tsai, Claudia J. See, Xia Li, Jinkyu Park, Tyler L. Stevens, Prameela J. Bobbili, Muhammad Riaz, Yongming Ren, Christopher E. Stoddard, Paul M.L. Janssen, T. Jared Bunch, Stephen P. Hall, Ying-Chun Lo, Daniel L. Jacoby, Yibing Qyang, Nathan Wright, Maegen A. Ackermann, Stuart G. Campbell
Ronald Ng, Heather Manring, Nikolaos Papoutsidakis, Taylor Albertelli, Nicole Tsai, Claudia J. See, Xia Li, Jinkyu Park, Tyler L. Stevens, Prameela J. Bobbili, Muhammad Riaz, Yongming Ren, Christopher E. Stoddard, Paul M.L. Janssen, T. Jared Bunch, Stephen P. Hall, Ying-Chun Lo, Daniel L. Jacoby, Yibing Qyang, Nathan Wright, Maegen A. Ackermann, Stuart G. Campbell
View: Text | PDF

Patient mutations linked to arrhythmogenic cardiomyopathy enhance calpain-mediated desmoplakin degradation

  • Text
  • PDF
Abstract

Arrhythmogenic cardiomyopathy (ACM) is an inherited disorder with variable genetic etiologies. Here, we focused on understanding the precise molecular pathology of a single clinical variant in DSP, the gene encoding desmoplakin. We initially identified a potentially novel missense desmoplakin variant (p.R451G) in a patient diagnosed with biventricular ACM. An extensive single-family ACM cohort was assembled, revealing a pattern of coinheritance for R451G desmoplakin and the ACM phenotype. An in vitro model system using patient-derived induced pluripotent stem cell lines showed depressed levels of desmoplakin in the absence of abnormal electrical propagation. Molecular dynamics simulations of desmoplakin R451G revealed no overt structural changes, but a significant loss of intramolecular interactions surrounding a putative calpain target site was observed. Protein degradation assays of recombinant desmoplakin R451G confirmed increased calpain vulnerability. In silico screening identified a subset of 3 additional ACM-linked desmoplakin missense mutations with apparent enhanced calpain susceptibility, predictions that were confirmed experimentally. Similar to R451G, these mutations are found in families with biventricular ACM. We conclude that augmented calpain-mediated degradation of desmoplakin represents a shared pathological mechanism for select ACM-linked missense variants. This approach for identifying variants with shared molecular pathologies may represent a powerful new strategy for understanding and treating inherited cardiomyopathies.

Authors

Ronald Ng, Heather Manring, Nikolaos Papoutsidakis, Taylor Albertelli, Nicole Tsai, Claudia J. See, Xia Li, Jinkyu Park, Tyler L. Stevens, Prameela J. Bobbili, Muhammad Riaz, Yongming Ren, Christopher E. Stoddard, Paul M.L. Janssen, T. Jared Bunch, Stephen P. Hall, Ying-Chun Lo, Daniel L. Jacoby, Yibing Qyang, Nathan Wright, Maegen A. Ackermann, Stuart G. Campbell

×

Targeting ATGL to rescue BSCL2 lipodystrophy and its associated cardiomyopathy
Hongyi Zhou, Xinnuo Lei, Yun Yan, Todd Lydic, Jie Li, Neal L. Weintraub, Huabo Su, Weiqin Chen
Hongyi Zhou, Xinnuo Lei, Yun Yan, Todd Lydic, Jie Li, Neal L. Weintraub, Huabo Su, Weiqin Chen
View: Text | PDF

Targeting ATGL to rescue BSCL2 lipodystrophy and its associated cardiomyopathy

  • Text
  • PDF
Abstract

Mutations in the BSCL2 gene underlie human type 2 Berardinelli-Seip congenital lipodystrophy (BSCL2) disease. Global Bscl2–/– mice recapitulate human BSCL2 lipodystrophy and results in the development of insulin resistance and hypertrophic cardiomyopathy. The pathological mechanisms underlying the development of lipodystrophy and cardiomyopathy in BSCL2 are controversial. Here we report that Bscl2–/– mice develop cardiac hypertrophy because of increased basal IGF1 receptor–mediated (IGF1R-mediated) PI3K/AKT signaling. Bscl2–/– hearts exhibited increased adipose triglyceride lipase (ATGL) protein stability and expression causing drastic reduction of glycerolipids. Excessive fatty acid oxidation was overt in Bscl2–/– hearts, partially attributing to the hyperacetylation of cardiac mitochondrial proteins. Intriguingly, pharmacological inhibition or genetic inactivation of ATGL could rescue adipocyte differentiation and lipodystrophy in Bscl2–/– cells and mice. Restoring a small portion of fat mass by ATGL partial deletion in Bscl2–/– mice not only reversed the systemic insulin resistance, but also ameliorated cardiac protein hyperacetylation, normalized cardiac substrate metabolism, and improved contractile function. Collectively, our study uncovers pathways underlying lipodystrophy-induced cardiac hypertrophy and metabolic remodeling and pinpoints ATGL as a downstream target of BSCL2 in regulating the development of lipodystrophy and its associated cardiomyopathy.

Authors

Hongyi Zhou, Xinnuo Lei, Yun Yan, Todd Lydic, Jie Li, Neal L. Weintraub, Huabo Su, Weiqin Chen

×

Mass spectrometry–driven exploration reveals nuances of neoepitope-driven tumor rejection
Hakimeh Ebrahimi-Nik, Justine Michaux, William L. Corwin, Grant L.J. Keller, Tatiana Shcheglova, HuiSong Pak, George Coukos, Brian M. Baker, Ion I. Mandoiu, Michal Bassani-Sternberg, Pramod K. Srivastava
Hakimeh Ebrahimi-Nik, Justine Michaux, William L. Corwin, Grant L.J. Keller, Tatiana Shcheglova, HuiSong Pak, George Coukos, Brian M. Baker, Ion I. Mandoiu, Michal Bassani-Sternberg, Pramod K. Srivastava
View: Text | PDF

Mass spectrometry–driven exploration reveals nuances of neoepitope-driven tumor rejection

  • Text
  • PDF
Abstract

Neoepitopes are the only truly tumor-specific antigens. Although potential neoepitopes can be readily identified using genomics, the neoepitopes that mediate tumor rejection constitute a small minority, and there is little consensus on how to identify them. Here, for the first time to our knowledge, we use a combination of genomics, unbiased discovery mass spectrometry (MS) immunopeptidomics, and targeted MS to directly identify neoepitopes that elicit actual tumor rejection in mice. We report that MS-identified neoepitopes are an astonishingly rich source of tumor rejection-mediating neoepitopes (TRMNs). MS has also demonstrated unambiguously the presentation by MHC I, of confirmed tumor rejection neoepitopes that bind weakly to MHC I; this was done using DCs exogenously loaded with long peptides containing the weakly binding neoepitopes. Such weakly MHC I–binding neoepitopes are routinely excluded from analysis, and our demonstration of their presentation, and their activity in tumor rejection, reveals a broader universe of tumor-rejection neoepitopes than presently imagined. Modeling studies show that a mutation in the active neoepitope alters its conformation such that its T cell receptor–facing surface is substantially altered, increasing its exposed hydrophobicity. No such changes are observed in the inactive neoepitope. These results broaden our understanding of antigen presentation and help prioritize neoepitopes for personalized cancer immunotherapy.

Authors

Hakimeh Ebrahimi-Nik, Justine Michaux, William L. Corwin, Grant L.J. Keller, Tatiana Shcheglova, HuiSong Pak, George Coukos, Brian M. Baker, Ion I. Mandoiu, Michal Bassani-Sternberg, Pramod K. Srivastava

×
  • ← Previous
  • 1
  • 2
  • …
  • 300
  • 301
  • 302
  • …
  • 418
  • 419
  • Next →

No posts were found with this tag.

Advertisement

Copyright © 2026 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts