Chikungunya virus (CHIKV) infection causes acute febrile illness in humans, and some of these individuals develop a debilitating chronic arthritis that can persist for months to years for reasons that remain poorly understood. In this study from India, we characterized antibody response patterns in febrile chikungunya patients and further assessed the association of these initial febrile-phase antibody response patterns with protection versus progression to developing chronic arthritis. We found 5 distinct patterns of the antibody responses in the febrile phase: no CHIKV binding or neutralizing (NT) antibodies but PCR positive, IgM alone with no NT activity, IgM alone with NT activity, IgM and IgG without NT activity, and IgM and IgG with NT activity. A 20-month follow-up showed that appearance of NT activity regardless of antibody isotype or appearance of IgG regardless of NT activity during the initial febrile phase was associated with a robust protection against developing chronic arthritis in the future. These findings, while providing potentially novel insights on correlates of protective immunity against chikungunya-induced chronic arthritis, suggest that qualitative differences in the antibody response patterns that have evolved during the febrile phase can serve as biomarkers that allow prediction of protection or progression to chronic arthritis in the future.
Kaustuv Nayak, Vineet Jain, Manpreet Kaur, Naushad Khan, Kamalvishnu Gottimukkala, Charu Aggarwal, Rohit Sagar, Shipra Gupta, Ramesh Chandra Rai, Kritika Dixit, Mohammad Islamuddin, Wajihul Hasan Khan, Anil Verma, Deepti Maheshwari, Yadya M. Chawla, Elluri Seetharami Reddy, Harekrushna Panda, Pragati Sharma, Priya Bhatnagar, Prabhat Singh, Siva Raghavendhar B, Ashok Kumar Patel, Vinod H. Ratageri, Anmol Chandele, Pratima Ray, Kaja Murali-Krishna
Acinetobacter baumannii (A. baumannii) is an extremely versatile multidrug-resistant pathogen with a very high mortality rate; therefore, it has become crucial to understand the host response during its infection. Given the importance of mice for modeling infection and their role in preclinical drug development, equal emphasis should be placed on the use of both sexes. Through our studies using a murine model of acute pneumonia with A. baumannii, we observed that female mice were more susceptible to infection. Likewise, treatment of male mice with estradiol increased their susceptibility to infection. Analysis of the airway compartment revealed enhanced inflammation and reduced neutrophil and alveolar macrophage numbers compared with male mice. Depletion of either neutrophils or alveolar macrophages was important for bacterial clearance; however, depletion of alveolar macrophages further exacerbated female susceptibility because of severe alterations in metabolic homeostasis. Our data highlight the importance of using both sexes when assessing host immune pathways.
Sílvia Pires, Adeline Peignier, Jeremy Seto, Davida S. Smyth, Dane Parker
Renal cysts are the defining feature of autosomal dominant polycystic kidney disease (ADPKD); however, the substantial interstitial inflammation is an often-overlooked aspect of this disorder. Recent studies suggest that immune cells in the cyst microenvironment affect ADPKD progression. Here we report that microRNAs (miRNAs) are new molecular signals in this crosstalk. We found that miR-214 and its host long noncoding RNA Dnm3os are upregulated in orthologous ADPKD mouse models and cystic kidneys from humans with ADPKD. In situ hybridization revealed that interstitial cells in the cyst microenvironment are the primary source of miR-214. While genetic deletion of miR-214 does not affect kidney development or homeostasis, surprisingly, its inhibition in Pkd2- and Pkd1-mutant mice aggravates cyst growth. Mechanistically, the proinflammatory TLR4/IFN-γ/STAT1 pathways transactivate the miR-214 host gene. miR-214, in turn as a negative feedback loop, directly inhibits Tlr4. Accordingly, miR-214 deletion is associated with increased Tlr4 expression and enhanced pericystic macrophage accumulation. Thus, miR-214 upregulation is a compensatory protective response in the cyst microenvironment that restrains inflammation and cyst growth.
Ronak Lakhia, Matanel Yheskel, Andrea Flaten, Harini Ramalingam, Karam Aboudehen, Silvia Ferrè, Laurence Biggers, Abheepsa Mishra, Christopher Chaney, Darren P. Wallace, Thomas Carroll, Peter Igarashi, Vishal Patel
Development of chemotherapy resistance is a major problem in ovarian cancer. One understudied mechanism of chemoresistance is the induction of quiescence, a reversible nonproliferative state. Unfortunately, little is known about regulators of quiescence. Here, we identify the master transcription factor nuclear factor of activated T cells cytoplasmic 4 (NFATC4) as a regulator of quiescence in ovarian cancer. NFATC4 is enriched in ovarian cancer stem-like cells and correlates with decreased proliferation and poor prognosis. Treatment of cancer cells with cisplatin resulted in NFATC4 nuclear translocation and activation of the NFATC4 pathway, while inhibition of the pathway increased chemotherapy response. Induction of NFATC4 activity resulted in a marked decrease in proliferation, G0 cell cycle arrest, and chemotherapy resistance, both in vitro and in vivo. Finally, NFATC4 drove a quiescent phenotype in part via downregulation of MYC. Together, these data identify NFATC4 as a driver of quiescence and a potential new target to combat chemoresistance in ovarian cancer.
Alexander J. Cole, Mangala Iyengar, Santiago Panesso-Gómez, Patrick O’Hayer, Daniel Chan, Greg M. Delgoffe, Katherine M. Aird, Euisik Yoon, Shoumei Bai, Ronald J. Buckanovich
C5a is a potent inflammatory mediator that binds C5aR1 and C5aR2. Although pathogenic roles of the C5a/C5aR1 axis in inflammatory disorders are well documented, the roles for the C5a/C5aR2 axis in inflammatory disorders and underlying mechanisms remain unclear. Here, we show that the C5a/C5aR2 axis contributes to renal inflammation and tissue damage in a mouse model of acute pyelonephritis. Compared with WT littermates, C5ar2–/– mice had significantly reduced renal inflammation, tubular damage, and renal bacterial load following bladder inoculation with uropathogenic E. coli. The decrease in inflammatory responses in the kidney of C5ar2–/– mice was correlated with reduced intrarenal levels of high mobility group box-1 protein (HMGB1), NLRP3 inflammasome components, cleaved caspase-1, and IL-1β. In vitro, C5a stimulation of macrophages from C5ar1–/– mice (lacking C5aR1 but expressing C5aR2) led to significant upregulation of HMGB1 release, NLRP3/cleaved caspase-1 inflammasome activation, and IL-1β secretion. Furthermore, blockade of HMGB1 significantly reduced C5a-mediated upregulation of NLRP3/cleaved caspase-1 inflammasome activation and IL-1β secretion in the macrophages, implying a HMGB1-dependent upregulation of NLRP3/cleaved caspase-1 inflammasome activation in macrophages. Our findings demonstrate a pathogenic role for the C5a/C5aR2 axis in renal injury following renal infection and suggest that the C5a/C5aR2 axis contributes to renal inflammation and tissue damage through upregulation of HMGB1 and NLRP3/cleaved caspase-1 inflammasome.
Ting Zhang, Kun-yi Wu, Ning Ma, Ling-lin Wei, Malgorzata Garstka, Wuding Zhou, Ke Li
Changes in maternal immunity during pregnancy can result in an altered immune state, and as a natural perturbation, this provides an opportunity to understand functional interactions of the immune system in vivo. We report characterization of maternal peripheral immune phenotypes for 33 longitudinally sampled normal pregnancies, using clinical measurements of complete blood counts and major immune cell populations, as well as high parameter flow cytometry for 30 leukocyte antigens characterizing 79 cell populations, and monitoring of 1305 serum proteins using the SomaLogic platform. Cellular analyses characterized transient changes in T cell polarization and more persistent alterations in T and B cell subset frequencies and activation. Serum proteomic analysis identified a potentially novel set of 7 proteins that are predictive of gestational age: DDR1, PLAU, MRC1, ACP5, ROBO2, IGF2R, and GNS. We further show that gestational age can be predicted from the parameters obtained by complete blood count tests and clinical flow cytometry characterizing 5 major immune cell populations. Inferring gestational age from this routine clinical phenotyping data could be useful in resource-limited settings that lack obstetric ultrasound. Overall, both the cellular and proteomic analyses validate previously reported phenotypic immunological changes of pregnancy and uncover potentially new alterations and predictive markers.
Richard Apps, Yuri Kotliarov, Foo Cheung, Kyu Lee Han, Jinguo Chen, Angélique Biancotto, Ashley Babyak, Huizhi Zhou, Rongye Shi, Lisa Barnhart, Sharon M. Osgood, Yasmine Belkaid, Steven M. Holland, John S. Tsang, Christa S. Zerbe
Leptin receptor–expressing (LepRb-expressing) neurons of the nucleus tractus solitarius (NTS; LepRbNTS neurons) receive gut signals that synergize with leptin action to suppress food intake. NTS neurons that express preproglucagon (Ppg) (and that produce the food intake–suppressing PPG cleavage product glucagon-like peptide-1 [GLP1]) represent a subpopulation of mouse LepRbNTS cells. Using Leprcre, Ppgcre, and Ppgfl mouse lines, along with Designer Receptors Exclusively Activated by Designer Drugs (DREADDs), we examined roles for Ppg in GLP1NTS and LepRbNTS cells for the control of food intake and energy balance. We found that the cre-dependent ablation of NTS Ppgfl early in development or in adult mice failed to alter energy balance, suggesting the importance of pathways independent of NTS GLP1 for the long-term control of food intake. Consistently, while activating GLP1NTS cells decreased food intake, LepRbNTS cells elicited larger and more durable effects. Furthermore, while the ablation of NTS Ppgfl blunted the ability of GLP1NTS neurons to suppress food intake during activation, it did not impact the suppression of food intake by LepRbNTS cells. While Ppg/GLP1-mediated neurotransmission plays a central role in the modest appetite-suppressing effects of GLP1NTS cells, additional pathways engaged by LepRbNTS cells dominate for the suppression of food intake.
Wenwen Cheng, Ermelinda Ndoka, Chelsea Hutch, Karen Roelofs, Andrew MacKinnon, Basma Khoury, Jack Magrisso, Ki Suk Kim, Christopher J. Rhodes, David P. Olson, Randy J. Seeley, Darleen Sandoval, Martin G. Myers Jr.
Abnormal wound repair has been observed in the airway epithelium of patients with chronic respiratory diseases, including asthma. Therapies focusing on repairing vulnerable airways, particularly in early life, present a potentially novel treatment strategy. We report defective lower airway epithelial cell repair to strongly associate with common pre–school-aged and school-aged wheezing phenotypes, characterized by aberrant migration patterns and reduced integrin α5β1 expression. Next generation sequencing identified the PI3K/Akt pathway as the top upstream transcriptional regulator of integrin α5β1, where Akt activation enhanced repair and integrin α5β1 expression in primary cultures from children with wheeze. Conversely, inhibition of PI3K/Akt signaling in primary cultures from children without wheeze reduced α5β1 expression and attenuated repair. Importantly, the FDA-approved drug celecoxib — and its non–COX2-inhibiting analogue, dimethyl-celecoxib — stimulated the PI3K/Akt–integrin α5β1 axis and restored airway epithelial repair in cells from children with wheeze. When compared with published clinical data sets, the identified transcriptomic signature was also associated with viral-induced wheeze exacerbations highlighting the clinical potential of such therapy. Collectively, these results identify airway epithelial restitution via targeting the PI3K–integrin α5β1 axis as a potentially novel therapeutic avenue for childhood wheeze and asthma. We propose that the next step in the therapeutic development process should be a proof-of-concept clinical trial, since relevant animal models to test the crucial underlying premise are unavailable.
Thomas Iosifidis, Erika N. Sutanto, Alysia G. Buckley, Laura Coleman, Erin E. Gill, Amy H. Lee, Kak-Ming Ling, Jessica Hillas, Kevin Looi, Luke W. Garratt, Kelly M. Martinovich, Nicole C. Shaw, Samuel T. Montgomery, Elizabeth Kicic-Starcevich, Yuliya V. Karpievitch, Peter Le Souëf, Ingrid A. Laing, Shyan Vijayasekaran, Francis J. Lannigan, Paul J. Rigby, Robert E.W. Hancock, Darryl A. Knight, Stephen M. Stick, Anthony Kicic., Western Australian Epithelial Research Program (WAERP), Australian Respiratory Epithelium Consortium (AusREC)
Neutrophil extracellular traps (NETs) promote inflammation and atherosclerosis progression. NETs are increased in diabetes and impair the resolution of inflammation during wound healing. Atherosclerosis resolution, a process resembling wound healing, is also impaired in diabetes. Thus, we hypothesized that NETs impede atherosclerosis resolution in diabetes by increasing plaque inflammation. Indeed, transcriptomic profiling of plaque macrophages from NET+ and NET– areas in low-density lipoprotein receptor–deficient (Ldlr–/–) mice revealed inflammasome and glycolysis pathway upregulation, indicating a heightened inflammatory phenotype. We found that NETs declined during atherosclerosis resolution, which was induced by reducing hyperlipidemia in nondiabetic mice, but they persisted in diabetes, exacerbating macrophage inflammation and impairing resolution. In diabetic mice, deoxyribonuclease 1 treatment reduced plaque NET content and macrophage inflammation, promoting atherosclerosis resolution after lipid lowering. Given that humans with diabetes also exhibit impaired atherosclerosis resolution with lipid lowering, these data suggest that NETs contribute to the increased cardiovascular disease risk in this population and are a potential therapeutic target.
Tatjana Josefs, Tessa J. Barrett, Emily J. Brown, Alexandra Quezada, Xiaoyun Wu, Maud Voisin, Jaume Amengual, Edward A. Fisher
Although human endogenous retroviruses (HERVs) represent a substantial proportion of the human genome and some HERVs, such as HERV-K(HML-2), are reported to be involved in neurological disorders, little is known about their biological function. We report that RNA from an HERV-K(HML-2) envelope gene region binds to and activates human Toll-like receptor (TLR) 8, as well as murine Tlr7, expressed in neurons and microglia, thereby causing neurodegeneration. HERV-K(HML-2) RNA introduced into the cerebrospinal fluid (CSF) of either C57BL/6 wild-type mice or APPPS1 mice, a mouse model for Alzheimer’s disease (AD), resulted in neurodegeneration and microglia accumulation. Tlr7-deficient mice were protected against neurodegenerative effects but were resensitized toward HERV-K(HML-2) RNA when neurons ectopically expressed murine Tlr7 or human TLR8. Transcriptome data sets of human AD brain samples revealed a distinct correlation of upregulated HERV-K(HML-2) and TLR8 RNA expression. HERV-K(HML-2) RNA was detectable more frequently in CSF from individuals with AD compared with controls. Our data establish HERV-K(HML-2) RNA as an endogenous ligand for species-specific TLRs 7/8 and imply a functional contribution of human endogenous retroviral transcripts to neurodegenerative processes, such as AD.
Paul Dembny, Andrew G. Newman, Manvendra Singh, Michael Hinz, Michal Szczepek, Christina Krüger, Robert Adalbert, Omar Dzaye, Thorsten Trimbuch, Thomas Wallach, Gunnar Kleinau, Katja Derkow, Bernhard C. Richard, Carola Schipke, Claus Scheidereit, Harald Stachelscheid, Douglas Golenbock, Oliver Peters, Michael Coleman, Frank L. Heppner, Patrick Scheerer, Victor Tarabykin, Klemens Ruprecht, Zsuzsanna Izsvák, Jens Mayer, Seija Lehnardt
No posts were found with this tag.