Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

  • 4,127 Articles
  • 0 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 248
  • 249
  • 250
  • …
  • 412
  • 413
  • Next →
Selective inhibition of mTORC1 in tumor vessels increases antitumor immunity
Shan Wang, Ariel Raybuck, Eileen Shiuan, Sung Hoon Cho, Qingfei Wang, Dana M. Brantley-Sieders, Deanna Edwards, Margaret M. Allaman, James Nathan, Keith T. Wilson, David DeNardo, Siyuan Zhang, Rebecca Cook, Mark Boothby, Jin Chen
Shan Wang, Ariel Raybuck, Eileen Shiuan, Sung Hoon Cho, Qingfei Wang, Dana M. Brantley-Sieders, Deanna Edwards, Margaret M. Allaman, James Nathan, Keith T. Wilson, David DeNardo, Siyuan Zhang, Rebecca Cook, Mark Boothby, Jin Chen
View: Text | PDF

Selective inhibition of mTORC1 in tumor vessels increases antitumor immunity

  • Text
  • PDF
Abstract

A tumor blood vessel is a key regulator of tissue perfusion, immune cell trafficking, cancer metastasis, and therapeutic responsiveness. mTORC1 is a signaling node downstream of multiple angiogenic factors in the endothelium. However, mTORC1 inhibitors have limited efficacy in most solid tumors, in part due to inhibition of immune function at high doses used in oncology patients and compensatory PI3K signaling triggered by mTORC1 inhibition in tumor cells. Here we show that low-dose RAD001/everolimus, an mTORC1 inhibitor, selectively targets mTORC1 signaling in endothelial cells (ECs) without affecting tumor cells or immune cells, resulting in tumor vessel normalization and increased antitumor immunity. Notably, this phenotype was recapitulated upon targeted inducible gene ablation of the mTORC1 component Raptor in tumor ECs (RaptorECKO). Tumors grown in RaptorECKO mice displayed a robust increase in tumor-infiltrating lymphocytes due to GM-CSF–mediated activation of CD103+ dendritic cells and displayed decreased tumor growth and metastasis. GM-CSF neutralization restored tumor growth and metastasis, as did T cell depletion. Importantly, analyses of human tumor data sets support our animal studies. Collectively, these findings demonstrate that endothelial mTORC1 is an actionable target for tumor vessel normalization, which could be leveraged to enhance antitumor immune therapies.

Authors

Shan Wang, Ariel Raybuck, Eileen Shiuan, Sung Hoon Cho, Qingfei Wang, Dana M. Brantley-Sieders, Deanna Edwards, Margaret M. Allaman, James Nathan, Keith T. Wilson, David DeNardo, Siyuan Zhang, Rebecca Cook, Mark Boothby, Jin Chen

×

Shock waves promote spinal cord repair via TLR3
Can Gollmann-Tepeköylü, Felix Nägele, Michael Graber, Leo Pölzl, Daniela Lobenwein, Jakob Hirsch, Angela An, Regina Irschick, Bernhard Röhrs, Christian Kremser, Hubert Hackl, Rosalie Huber, Serena Venezia, David Hercher, Helga Fritsch, Nikolaos Bonaros, Nadia Stefanova, Ivan Tancevski, Dirk Meyer, Michael Grimm, Johannes Holfeld
Can Gollmann-Tepeköylü, Felix Nägele, Michael Graber, Leo Pölzl, Daniela Lobenwein, Jakob Hirsch, Angela An, Regina Irschick, Bernhard Röhrs, Christian Kremser, Hubert Hackl, Rosalie Huber, Serena Venezia, David Hercher, Helga Fritsch, Nikolaos Bonaros, Nadia Stefanova, Ivan Tancevski, Dirk Meyer, Michael Grimm, Johannes Holfeld
View: Text | PDF

Shock waves promote spinal cord repair via TLR3

  • Text
  • PDF
Abstract

Spinal cord injury (SCI) remains a devastating condition with poor prognosis and very limited treatment options. Affected patients are severely restricted in their daily activities. Shock wave therapy (SWT) has shown potent regenerative properties in bone fractures, wounds, and ischemic myocardium via activation of the innate immune receptor TLR3. Here, we report on the efficacy of SWT for regeneration of SCI. SWT improved motor function and decreased lesion size in WT but not Tlr3–/– mice via inhibition of neuronal degeneration and IL6-dependent recruitment and differentiation of neuronal progenitor cells. Both SWT and TLR3 stimulation enhanced neuronal sprouting and improved neuronal survival, even in human spinal cord cultures. We identified tlr3 as crucial enhancer of spinal cord regeneration in zebrafish. Our findings indicate that TLR3 signaling is involved in neuroprotection and spinal cord repair and suggest that TLR3 stimulation via SWT could become a potent regenerative treatment option.

Authors

Can Gollmann-Tepeköylü, Felix Nägele, Michael Graber, Leo Pölzl, Daniela Lobenwein, Jakob Hirsch, Angela An, Regina Irschick, Bernhard Röhrs, Christian Kremser, Hubert Hackl, Rosalie Huber, Serena Venezia, David Hercher, Helga Fritsch, Nikolaos Bonaros, Nadia Stefanova, Ivan Tancevski, Dirk Meyer, Michael Grimm, Johannes Holfeld

×

Inhibition of DDR1 enhances in vivo chemosensitivity in KRAS-mutant lung adenocarcinoma
Marie-Julie Nokin, Elodie Darbo, Camille Travert, Benjamin Drogat, Aurélie Lacouture, Sonia San José, Nuria Cabrera, Béatrice Turcq, Valérie Prouzet-Mauleon, Mattia Falcone, Alberto Villanueva, Haiyun Wang, Michael Herfs, Miguel Mosteiro, Pasi A. Jänne, Jean-Louis Pujol, Antonio Maraver, Mariano Barbacid, Ernest Nadal, David Santamaría, Chiara Ambrogio
Marie-Julie Nokin, Elodie Darbo, Camille Travert, Benjamin Drogat, Aurélie Lacouture, Sonia San José, Nuria Cabrera, Béatrice Turcq, Valérie Prouzet-Mauleon, Mattia Falcone, Alberto Villanueva, Haiyun Wang, Michael Herfs, Miguel Mosteiro, Pasi A. Jänne, Jean-Louis Pujol, Antonio Maraver, Mariano Barbacid, Ernest Nadal, David Santamaría, Chiara Ambrogio
View: Text | PDF

Inhibition of DDR1 enhances in vivo chemosensitivity in KRAS-mutant lung adenocarcinoma

  • Text
  • PDF
Abstract

Platinum-based chemotherapy in combination with immune-checkpoint inhibitors is the current standard of care for patients with advanced lung adenocarcinoma (LUAD). However, tumor progression evolves in most cases. Therefore, predictive biomarkers are needed for better patient stratification and for the identification of new therapeutic strategies, including enhancing the efficacy of chemotoxic agents. Here, we hypothesized that discoidin domain receptor 1 (DDR1) may be both a predictive factor for chemoresistance in patients with LUAD and a potential target positively selected in resistant cells. By using biopsies from patients with LUAD, KRAS-mutant LUAD cell lines, and in vivo genetically engineered KRAS-driven mouse models, we evaluated the role of DDR1 in the context of chemotherapy treatment. We found that DDR1 is upregulated during chemotherapy both in vitro and in vivo. Moreover, analysis of a cohort of patients with LUAD suggested that high DDR1 levels in pretreatment biopsies correlated with poor response to chemotherapy. Additionally, we showed that combining DDR1 inhibition with chemotherapy prompted a synergistic therapeutic effect and enhanced cell death of KRAS-mutant tumors in vivo. Collectively, this study suggests a potential role for DDR1 as both a predictive and prognostic biomarker, potentially improving the chemotherapy response of patients with LUAD.

Authors

Marie-Julie Nokin, Elodie Darbo, Camille Travert, Benjamin Drogat, Aurélie Lacouture, Sonia San José, Nuria Cabrera, Béatrice Turcq, Valérie Prouzet-Mauleon, Mattia Falcone, Alberto Villanueva, Haiyun Wang, Michael Herfs, Miguel Mosteiro, Pasi A. Jänne, Jean-Louis Pujol, Antonio Maraver, Mariano Barbacid, Ernest Nadal, David Santamaría, Chiara Ambrogio

×

Patient ancestry significantly contributes to molecular heterogeneity of systemic lupus erythematosus
Michelle D. Catalina, Prathyusha Bachali, Anthony E. Yeo, Nicholas S. Geraci, Michelle A. Petri, Amrie C. Grammer, Peter E. Lipsky
Michelle D. Catalina, Prathyusha Bachali, Anthony E. Yeo, Nicholas S. Geraci, Michelle A. Petri, Amrie C. Grammer, Peter E. Lipsky
View: Text | PDF

Patient ancestry significantly contributes to molecular heterogeneity of systemic lupus erythematosus

  • Text
  • PDF
Abstract

Gene expression signatures can stratify patients with heterogeneous diseases, such as systemic lupus erythematosus (SLE), yet understanding the contributions of ancestral background to this heterogeneity is not well understood. We hypothesized that ancestry would significantly influence gene expression signatures and measured 34 gene modules in 1566 SLE patients of African ancestry (AA), European ancestry (EA), or Native American ancestry (NAA). Healthy subject ancestry-specific gene expression provided the transcriptomic background upon which the SLE patient signatures were built. Although standard therapy affected every gene signature and significantly increased myeloid cell signatures, logistic regression analysis determined that ancestral background significantly changed 23 of 34 gene signatures. Additionally, the strongest association to gene expression changes was found with autoantibodies, and this also had etiology in ancestry: the AA predisposition to have both RNP and dsDNA autoantibodies compared with EA predisposition to have only anti-dsDNA. A machine learning approach was used to determine a gene signature characteristic to distinguish AA SLE and was most influenced by genes characteristic of the perturbed B cell axis in AA SLE patients.

Authors

Michelle D. Catalina, Prathyusha Bachali, Anthony E. Yeo, Nicholas S. Geraci, Michelle A. Petri, Amrie C. Grammer, Peter E. Lipsky

×

Intravascular hemolysis triggers ADP-mediated generation of platelet-rich thrombi in precapillary pulmonary arterioles
Tomasz Brzoska, Ravi Vats, Margaret F. Bennewitz, Egemen Tutuncuoglu, Simon C. Watkins, Margaret V. Ragni, Matthew D. Neal, Mark T. Gladwin, Prithu Sundd
Tomasz Brzoska, Ravi Vats, Margaret F. Bennewitz, Egemen Tutuncuoglu, Simon C. Watkins, Margaret V. Ragni, Matthew D. Neal, Mark T. Gladwin, Prithu Sundd
View: Text | PDF

Intravascular hemolysis triggers ADP-mediated generation of platelet-rich thrombi in precapillary pulmonary arterioles

  • Text
  • PDF
Abstract

Patients with hereditary or acquired hemolytic anemias have a high risk of developing in situ thrombosis of the pulmonary vasculature. While pulmonary thrombosis is a major morbidity associated with hemolytic disorders, the etiological mechanism underlying hemolysis-induced pulmonary thrombosis remains largely unknown. Here, we use intravital lung microscopy in mice to assess the pathogenesis of pulmonary thrombosis following deionized water–induced acute intravascular hemolysis. Acute hemolysis triggered the development of αIIbβ3-dependent platelet-rich thrombi in precapillary pulmonary arterioles, which led to the transient impairment of pulmonary blood flow. The hemolysis-induced pulmonary thrombosis was phenocopied with intravascular ADP- but not thrombin-triggered pulmonary thrombosis. Consistent with a mechanism involving ADP release from hemolyzing erythrocytes, the inhibition of platelet P2Y12 purinergic receptor signaling attenuated pulmonary thrombosis and rescued blood flow in the pulmonary arterioles of mice following intravascular hemolysis. These findings are the first in vivo studies to our knowledge to suggest that acute intravascular hemolysis promotes ADP-dependent platelet activation, leading to thrombosis in the precapillary pulmonary arterioles, and that thrombin generation most likely does not play a significant role in the pathogenesis of acute hemolysis–triggered pulmonary thrombosis.

Authors

Tomasz Brzoska, Ravi Vats, Margaret F. Bennewitz, Egemen Tutuncuoglu, Simon C. Watkins, Margaret V. Ragni, Matthew D. Neal, Mark T. Gladwin, Prithu Sundd

×

Proteomics identifies a convergent innate response to infective endocarditis and extensive proteolysis in vegetation components
Daniel R. Martin, James C. Witten, Carmela D. Tan, E. Rene Rodriguez, Eugene H. Blackstone, Gosta B. Pettersson, Deborah E. Seifert, Belinda B. Willard, Suneel S. Apte
Daniel R. Martin, James C. Witten, Carmela D. Tan, E. Rene Rodriguez, Eugene H. Blackstone, Gosta B. Pettersson, Deborah E. Seifert, Belinda B. Willard, Suneel S. Apte
View: Text | PDF

Proteomics identifies a convergent innate response to infective endocarditis and extensive proteolysis in vegetation components

  • Text
  • PDF
Abstract

Infective endocarditis is a life-threatening infection of heart valves and adjacent structures characterized by vegetations on valves and other endocardial surfaces, with tissue destruction and risk of embolization. We used high-resolution mass spectrometry to define the proteome of staphylococcal and non-staphylococcal vegetations and Terminal Amine Isotopic Labeling of Substrates (TAILS) to define their proteolytic landscapes. These approaches identified over 2000 human proteins in staphylococcal and non-staphylococcal vegetations. Individual vegetation proteomes demonstrated comparable profiles of quantitatively major constituents that overlapped with serum, platelet, and neutrophil proteomes. Staphylococcal vegetation proteomes resembled one another more than the proteomes of non-staphylococcal vegetations. TAILS demonstrated extensive proteolysis within vegetations, with numerous previously undescribed cleavages. Several proteases and pathogen-specific proteins, including virulence factors, were identified in most vegetations. Proteolytic peptides in fibronectin and complement C3 were identified as potential infective endocarditis biomarkers. Overlap of staphylococcal and non-staphylococcal vegetation proteomes suggests a convergent thrombotic and immune response to endocardial infection by diverse pathogens. However, the differences between staphylococcal and non-staphylococcal vegetations and internal variance within the non-staphylococcal group indicate that additional pathogen- or patient-specific effects exist. Pervasive proteolysis of vegetation components may arise from vegetation-intrinsic proteases and destabilize vegetations, contributing to embolism.

Authors

Daniel R. Martin, James C. Witten, Carmela D. Tan, E. Rene Rodriguez, Eugene H. Blackstone, Gosta B. Pettersson, Deborah E. Seifert, Belinda B. Willard, Suneel S. Apte

×

miR-96 and miR-183 differentially regulate neonatal and adult postinfarct neovascularization
Raphael F.P. Castellan, Milena Vitiello, Martina Vidmar, Steven Johnstone, Dominga Iacobazzi, David Mellis, Benjamin Cathcart, Adrian Thomson, Christiana Ruhrberg, Massimo Caputo, David E. Newby, Gillian A. Gray, Andrew H. Baker, Andrea Caporali, Marco Meloni
Raphael F.P. Castellan, Milena Vitiello, Martina Vidmar, Steven Johnstone, Dominga Iacobazzi, David Mellis, Benjamin Cathcart, Adrian Thomson, Christiana Ruhrberg, Massimo Caputo, David E. Newby, Gillian A. Gray, Andrew H. Baker, Andrea Caporali, Marco Meloni
View: Text | PDF

miR-96 and miR-183 differentially regulate neonatal and adult postinfarct neovascularization

  • Text
  • PDF
Abstract

Following myocardial infarction (MI), the adult heart has minimal regenerative potential. Conversely, the neonatal heart can undergo extensive regeneration, and neovascularization capacity was hypothesized to contribute to this difference. Here, we demonstrate the higher angiogenic potential of neonatal compared with adult mouse cardiac endothelial cells (MCECs) in vitro and use this difference to identify candidate microRNAs (miRs) regulating cardiac angiogenesis after MI. miR expression profiling revealed miR-96 and miR-183 upregulation in adult compared with neonatal MCECs. Their overexpression decreased the angiogenic potential of neonatal MCECs in vitro and prevented scar resolution and neovascularization in neonatal mice after MI. Inversely, their inhibition improved the angiogenic potential of adult MCECs, and miR-96/miR-183–KO mice had increased peri-infarct neovascularization. In silico analyses identified anillin (ANLN) as a direct target of miR-96 and miR-183. In agreement, Anln expression declined following their overexpression and increased after their inhibition in vitro. Moreover, ANLN expression inversely correlated with miR-96 expression and age in cardiac ECs of cardiovascular patients. In vivo, ANLN+ vessels were enriched in the peri-infarct area of miR-96/miR-183–KO mice. These findings identify miR-96 and miR-183 as regulators of neovascularization following MI and miR-regulated genes, such as anillin, as potential therapeutic targets for cardiovascular disease.

Authors

Raphael F.P. Castellan, Milena Vitiello, Martina Vidmar, Steven Johnstone, Dominga Iacobazzi, David Mellis, Benjamin Cathcart, Adrian Thomson, Christiana Ruhrberg, Massimo Caputo, David E. Newby, Gillian A. Gray, Andrew H. Baker, Andrea Caporali, Marco Meloni

×

ELA/APELA precursor cleaved by furin displays tumor suppressor function in renal cell carcinoma through mTORC1 activation
Fabienne Soulet, Clement Bodineau, Katarzyna B. Hooks, Jean Descarpentrie, Isabel Alves, Marielle Dubreuil, Amandine Mouchard, Malaurie Eugenie, Jean-Luc Hoepffner, Jose J. López, Juan A. Rosado, Isabelle Soubeyran, Mercedes Tomé, Raúl V. Durán, Macha Nikolski, Bruno O. Villoutreix, Serge Evrard, Geraldine Siegfried, Abdel-Majid Khatib
Fabienne Soulet, Clement Bodineau, Katarzyna B. Hooks, Jean Descarpentrie, Isabel Alves, Marielle Dubreuil, Amandine Mouchard, Malaurie Eugenie, Jean-Luc Hoepffner, Jose J. López, Juan A. Rosado, Isabelle Soubeyran, Mercedes Tomé, Raúl V. Durán, Macha Nikolski, Bruno O. Villoutreix, Serge Evrard, Geraldine Siegfried, Abdel-Majid Khatib
View: Text | PDF

ELA/APELA precursor cleaved by furin displays tumor suppressor function in renal cell carcinoma through mTORC1 activation

  • Text
  • PDF
Abstract

Apelin is a well-established mediator of survival and mitogenic signaling through the apelin receptor (Aplnr) and has been implicated in various cancers; however, little is known regarding Elabela (ELA/APELA) signaling, also mediated by Aplnr, and its role and the role of the conversion of its precursor proELA into mature ELA in cancer are unknown. Here, we identified a function of mTORC1 signaling as an essential mediator of ELA that repressed kidney tumor cell growth, migration, and survival. Moreover, sunitinib and ELA showed a synergistic effect in repressing tumor growth and angiogenesis in mice. The use of site-directed mutagenesis and pharmacological experiments provided evidence that the alteration of the cleavage site of proELA by furin induced improved ELA antitumorigenic activity. Finally, a cohort of tumors and public data sets revealed that ELA was only repressed in the main human kidney cancer subtypes, namely clear cell, papillary, and chromophobe renal cell carcinoma. Aplnr was expressed by various kidney cells, whereas ELA was generally expressed by epithelial cells. Collectively, these results showed the tumor-suppressive role of mTORC1 signaling mediated by ELA and established the potential use of ELA or derivatives in kidney cancer treatment.

Authors

Fabienne Soulet, Clement Bodineau, Katarzyna B. Hooks, Jean Descarpentrie, Isabel Alves, Marielle Dubreuil, Amandine Mouchard, Malaurie Eugenie, Jean-Luc Hoepffner, Jose J. López, Juan A. Rosado, Isabelle Soubeyran, Mercedes Tomé, Raúl V. Durán, Macha Nikolski, Bruno O. Villoutreix, Serge Evrard, Geraldine Siegfried, Abdel-Majid Khatib

×

Pulmonary Mycobacterium tuberculosis control associates with CXCR3- and CCR6-expressing antigen-specific Th1 and Th17 cell recruitment
Uma Shanmugasundaram, Allison N. Bucsan, Shashank R. Ganatra, Chris Ibegbu, Melanie Quezada, Robert V. Blair, Xavier Alvarez, Vijayakumar Velu, Deepak Kaushal, Jyothi Rengarajan
Uma Shanmugasundaram, Allison N. Bucsan, Shashank R. Ganatra, Chris Ibegbu, Melanie Quezada, Robert V. Blair, Xavier Alvarez, Vijayakumar Velu, Deepak Kaushal, Jyothi Rengarajan
View: Text | PDF

Pulmonary Mycobacterium tuberculosis control associates with CXCR3- and CCR6-expressing antigen-specific Th1 and Th17 cell recruitment

  • Text
  • PDF
Abstract

Mycobacterium tuberculosis–specific (M. tuberculosis–specific) T cell responses associated with immune control during asymptomatic latent tuberculosis infection (LTBI) remain poorly understood. Using a nonhuman primate aerosol model, we studied the kinetics, phenotypes, and functions of M. tuberculosis antigen-specific T cells in peripheral and lung compartments of M. tuberculosis–infected asymptomatic rhesus macaques by longitudinally sampling blood and bronchoalveolar lavage, for up to 24 weeks postinfection. We found substantially higher frequencies of M. tuberculosis–specific effector and memory CD4+ and CD8+ T cells producing IFN-γ in the airways compared with peripheral blood, and these frequencies were maintained throughout the study period. Moreover, M. tuberculosis–specific IL-17+ and IL-17+IFN-γ+ double-positive T cells were present in the airways but were largely absent in the periphery, suggesting that balanced mucosal Th1/Th17 responses are associated with LTBI. The majority of M. tuberculosis–specific CD4+ T cells that homed to the airways expressed the chemokine receptor CXCR3 and coexpressed CCR6. Notably, CXCR3+CD4+ cells were found in granulomatous and nongranulomatous regions of the lung and inversely correlated with M. tuberculosis burden. Our findings provide insights into antigen-specific T cell responses associated with asymptomatic M. tuberculosis infection that are relevant for developing better strategies to control TB.

Authors

Uma Shanmugasundaram, Allison N. Bucsan, Shashank R. Ganatra, Chris Ibegbu, Melanie Quezada, Robert V. Blair, Xavier Alvarez, Vijayakumar Velu, Deepak Kaushal, Jyothi Rengarajan

×

Leptin decreases de novo lipogenesis in patients with lipodystrophy
Annah P. Baykal, Elizabeth J. Parks, Robert Shamburek, Majid M. Syed-Abdul, Shaji Chacko, Elaine Cochran, Megan Startzell, Ahmed M. Gharib, Ronald Ouwerkerk, Khaled Z. Abd-Elmoniem, Peter J. Walter, Mary Walter, Ranganath Muniyappa, Stephanie T. Chung, Rebecca J. Brown
Annah P. Baykal, Elizabeth J. Parks, Robert Shamburek, Majid M. Syed-Abdul, Shaji Chacko, Elaine Cochran, Megan Startzell, Ahmed M. Gharib, Ronald Ouwerkerk, Khaled Z. Abd-Elmoniem, Peter J. Walter, Mary Walter, Ranganath Muniyappa, Stephanie T. Chung, Rebecca J. Brown
View: Text | PDF

Leptin decreases de novo lipogenesis in patients with lipodystrophy

  • Text
  • PDF
Abstract

De novo lipogenesis (DNL) plays a role in the development of hepatic steatosis. In humans with lipodystrophy, reduced adipose tissue causes lower plasma leptin, insulin resistance, dyslipidemia, and ectopic triglyceride (TG) accumulation. We hypothesized that recombinant leptin (metreleptin) for 6 months in 11 patients with lipodystrophy would reduce DNL by decreasing insulin resistance and glycemia, thus reducing circulating TG and hepatic TG. The percentage of TG in TG-rich lipoprotein particle (TRLP-TG) derived from DNL (%DNL) was measured by deuterium incorporation from body water into palmitate. At baseline, DNL was elevated, similar to levels previously shown in obesity-associated nonalcoholic fatty liver disease (NAFLD). After metreleptin, DNL decreased into the normal range. Similarly, absolute DNL (TRLP-TG × %DNL) decreased by 88% to near-normal levels. Metreleptin improved peripheral insulin sensitivity (hyperinsulinemic-euglycemic clamp) and lowered hemoglobin A1c and hepatic TG. Both before and after metreleptin, DNL positively correlated with insulin resistance, insulin doses, and hepatic TG, supporting the hypothesis that hyperinsulinemia stimulates DNL and that elevated DNL is integral to the pathogenesis of lipodystrophy-associated NAFLD. These data suggest that leptin-mediated improvement in insulin sensitivity increases clearance of blood glucose by peripheral tissues, reduces hepatic carbohydrate flux, and lowers insulinemia, resulting in DNL reductions and improvements in hepatic steatosis and dyslipidemia.

Authors

Annah P. Baykal, Elizabeth J. Parks, Robert Shamburek, Majid M. Syed-Abdul, Shaji Chacko, Elaine Cochran, Megan Startzell, Ahmed M. Gharib, Ronald Ouwerkerk, Khaled Z. Abd-Elmoniem, Peter J. Walter, Mary Walter, Ranganath Muniyappa, Stephanie T. Chung, Rebecca J. Brown

×
  • ← Previous
  • 1
  • 2
  • …
  • 248
  • 249
  • 250
  • …
  • 412
  • 413
  • Next →

No posts were found with this tag.

Advertisement

Copyright © 2026 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts