GWAS have linked SNPs to risk of inflammatory bowel disease (IBD), but a systematic characterization of disease-associated genes has been lacking. Prior studies utilized microarrays that did not capture many genes encoded within risk loci or defined expression quantitative trait loci (eQTLs) using peripheral blood, which is not the target tissue in IBD. To address these gaps, we sought to characterize the expression of IBD-associated risk genes in disease-relevant tissues and in the setting of active IBD. Terminal ileal (TI) and colonic mucosal tissues were obtained from patients with Crohn’s disease or ulcerative colitis and from healthy controls. We developed a NanoString code set to profile 678 genes within IBD risk loci. A subset of patients and controls were genotyped for IBD-associated risk SNPs. Analyses included differential expression and variance analysis, weighted gene coexpression network analysis, and eQTL analysis. We identified 116 genes that discriminate between healthy TI and colon samples and uncovered patterns in variance of gene expression that highlight heterogeneity of disease. We identified 107 coexpressed gene pairs for which transcriptional regulation is either conserved or reversed in an inflammation-independent or -dependent manner. We demonstrate that on average approximately 60% of disease-associated genes are differentially expressed in inflamed tissue. Last, we identified eQTLs with either genotype-only effects on expression or an interaction effect between genotype and inflammation. Our data reinforce tissue specificity of expression in disease-associated candidate genes, highlight genes and gene pairs that are regulated in disease-relevant tissue and inflammation, and provide a foundation to advance the understanding of IBD pathogenesis.
Joanna M. Peloquin, Gautam Goel, Lingjia Kong, Hailiang Huang, Talin Haritunians, R. Balfour Sartor, Mark J. Daly, Rodney D. Newberry, Dermot P. McGovern, Vijay Yajnik, Sergio A. Lira, Ramnik J. Xavier
Motile airway cilia that propel contaminants out of the lung are oriented in a common direction by planar cell polarity (PCP) signaling, which localizes PCP protein complexes to opposite cell sides throughout the epithelium to orient cytoskeletal remodeling. In airway epithelia, PCP is determined in a 2-phase process. First, cell-cell communication via PCP complexes polarizes all cells with respect to the proximal-distal tissue axis. Second, during ciliogenesis, multiciliated cells (MCCs) undergo cytoskeletal remodeling to orient their cilia in the proximal direction. The second phase not only directs cilium polarization, but also consolidates polarization across the epithelium. Here, we demonstrate that in airway epithelia, PCP depends on MCC differentiation. PCP mutant epithelia have misaligned cilia, and also display defective barrier function and regeneration, indicating that PCP regulates multiple aspects of airway epithelial homeostasis. In humans, MCCs are often sparse in chronic inflammatory diseases, and these airways exhibit PCP dysfunction. The presence of insufficient MCCs impairs mucociliary clearance in part by disrupting PCP-driven polarization of the epithelium. Consistent with defective PCP, barrier function and regeneration are also disrupted. Pharmacological stimulation of MCC differentiation restores PCP and reverses these defects, suggesting its potential for broad therapeutic benefit in chronic inflammatory disease.
Eszter K. Vladar, Jayakar V. Nayak, Carlos E. Milla, Jeffrey D. Axelrod
Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) is a rare primary immunodeficiency disorder typically caused by homozygous
Elise M.N. Ferre, Stacey R. Rose, Sergio D. Rosenzweig, Peter D. Burbelo, Kimberly R. Romito, Julie E. Niemela, Lindsey B. Rosen, Timothy J. Break, Wenjuan Gu, Sally Hunsberger, Sarah K. Browne, Amy P. Hsu, Shakuntala Rampertaap, Muthulekha Swamydas, Amanda L. Collar, Heidi H. Kong, Chyi-Chia Richard Lee, David Chascsa, Thomas Simcox, Angela Pham, Anamaria Bondici, Mukil Natarajan, Joseph Monsale, David E. Kleiner, Martha Quezado, Ilias Alevizos, Niki M. Moutsopoulos, Lynne Yockey, Cathleen Frein, Ariane Soldatos, Katherine R. Calvo, Jennifer Adjemian, Morgan N. Similuk, David M. Lang, Kelly D. Stone, Gulbu Uzel, Jeffrey B. Kopp, Rachel J. Bishop, Steven M. Holland, Kenneth N. Olivier, Thomas A. Fleisher, Theo Heller, Karen K. Winer, Michail S. Lionakis
A number of studies in model animal systems and in the clinic have established that RANKL promotes bone resorption. Paradoxically, we found that pulsing ovariectomized mice with low-dose RANKL suppressed bone resorption, decreased the levels of proinflammatory effector T cells and led to increased bone mass. This effect of RANKL is mediated through the induction of FoxP3+CD25+ regulatory CD8+ T cells (TcREG) by osteoclasts. Here, we show that pulses of low-dose RANKL are needed to induce TcREG, as continuous infusion of identical doses of RANKL by pump did not induce TcREG. We also show that low-dose RANKL can induce TcREG at 2, 3, 6, and 10 weeks after ovariectomy. Our results show that low-dose RANKL treatment in ovariectomized mice is optimal at once-per-month doses to maintain the bone mass. Finally, we found that treatment of ovariectomized mice with the Cathepsin K inhibitor odanacatib also blocked TcREG induction by low-dose RANKL. We interpret this result to indicate that antigens presented to CD8+ T cells by osteoclasts are derived from the bone protein matrix because Cathepsin K degrades collagen in the bone. Taken together, our studies provide a basis for using low-dose RANKL as a potential therapeutic for postmenopausal osteoporosis.
Anna Cline-Smith, Jesse Gibbs, Elena Shashkova, Zachary S. Buchwald, Rajeev Aurora
Dermal white adipose tissue (dWAT) was recently recognized for its potential to modify whole body metabolism. Here, we show that dWAT can be quantified using a high-resolution, fat-specific magnetic resonance imaging (MRI) technique. Noninvasive MRI has been used to describe adipocyte depots for many years; the MRI technique we describe uses an advanced fat-specific method to measure the thickness of dWAT, together with the total volume of WAT and the relative activation/fat depletion of brown adipose tissues (BAT). Since skin-embedded adipocytes may provide natural insulation, they provide an important counterpoint to the activation of thermogenic brown and beige adipose tissues, whereby these distinct depots are functionally interrelated and require simultaneous assay. This method was validated using characterized mouse cohorts of a lipodystrophic, dWAT-deficient strain (syndecan-1 KO) and 2 obese models (diet-induced obese mice and genetically obese animals,
Ildiko Kasza, Diego Hernando, Alejandro Roldán-Alzate, Caroline M. Alexander, Scott B. Reeder
Studies in rodents and newborn humans demonstrate the influence of brown adipose tissue (BAT) in temperature control and energy balance and a critical role in the regulation of body weight. Here, we obtained samples of epicardial adipose tissue (EAT) from neonates, infants, and children in order to evaluate changes in their transcriptional landscape by applying a systems biology approach. Surprisingly, these analyses revealed that the transition to infancy is a critical stage for changes in the morphology of EAT and is reflected in unique gene expression patterns of a substantial proportion of thermogenic gene transcripts (~10%). Our results also indicated that the pattern of gene expression represents a distinct developmental stage, even after the rebound in abundance of thermogenic genes in later childhood. Using weighted gene coexpression network analyses, we found precise anthropometric-specific correlations with changes in gene expression and the decline of thermogenic capacity within EAT. In addition, these results indicate a sequential order of transcriptional events affecting cellular pathways, which could potentially explain the variation in the amount, or activity, of BAT in adulthood. Together, these results provide a resource to elucidate gene regulatory mechanisms underlying the progressive development of BAT during early life.
Shalini Ojha, Hernan P. Fainberg, Victoria Wilson, Giuseppe Pelella, Marcos Castellanos, Sean T. May, Attilio A. Lotto, Harold Sacks, Michael E. Symonds, Helen Budge
The strong association of Zika virus infection with congenital defects has led to questions of how a flavivirus is capable of crossing the placental barrier to reach the fetal brain. Here, we demonstrate permissive Zika virus infection of primary human placental macrophages, commonly referred to as Hofbauer cells, and placental villous fibroblasts. We also demonstrate Zika virus infection of Hofbauer cells within the context of the tissue ex vivo using term placental villous explants. In addition to amplifying infectious virus within a usually inaccessible area, the putative migratory activities of Hofbauer cells may aid in dissemination of Zika virus to the fetal brain. Understanding the susceptibility of placenta-specific cell types will aid future work around and understanding of Zika virus–associated pregnancy complications.
Kellie Ann Jurado, Michael K. Simoni, Zhonghua Tang, Ryuta Uraki, Jesse Hwang, Sarah Householder, Mingjie Wu, Brett D. Lindenbach, Vikki M. Abrahams, Seth Guller, Erol Fikrig
Senescent cells accumulate in many tissues as animals age and are considered to underlie several aging-associated pathologies. The tumor suppressors p19ARF and p16INK4a, both of which are encoded in the
Michihiro Hashimoto, Azusa Asai, Hiroyuki Kawagishi, Ryuta Mikawa, Yuji Iwashita, Kazuki Kanayama, Kazushi Sugimoto, Tadashi Sato, Mitsuo Maruyama, Masataka Sugimoto
Fibrosis is a shared end-stage pathway to lung, liver, and heart failure. In the ocular mucosa (conjunctiva), fibrosis leads to blindness in trachoma, pemphigoid, and allergy. The indirect fibrogenic role of DCs via T cell activation and inflammatory cell recruitment is well documented. However, here we demonstrate that DCs can directly induce fibrosis. In the mouse model of allergic eye disease (AED), classical CD11b+ DCs in the ocular mucosa showed increased activity of aldehyde dehydrogenase (ALDH), the enzyme required for retinoic acid synthesis. In vitro, CD11b+ DC–derived ALDH was associated with 9-
Sarah D. Ahadome, Rose Mathew, Nancy J. Reyes, Priyatham S. Mettu, Scott W. Cousins, Virginia L. Calder, Daniel R. Saban
Mucous membrane pemphigoid (MMP) is a systemic mucosal scarring disease, commonly causing blindness, for which there is no antifibrotic therapy. Aldehyde dehydrogenase family 1 (ALDH1) is upregulated in both ocular MMP (OMMP) conjunctiva and cultured fibroblasts. Application of the ALDH metabolite, retinoic acid (RA), to normal human conjunctival fibroblasts in vitro induced a diseased phenotype. Conversely, application of ALDH inhibitors, including disulfiram, to OMMP fibroblasts in vitro restored their functionality to that of normal controls. ALDH1 is also upregulated in the mucosa of the mouse model of scarring allergic eye disease (AED), used here as a surrogate for OMMP, in which topical application of disulfiram decreased fibrosis in vivo. These data suggest that progressive scarring in OMMP results from ALDH/RA fibroblast autoregulation, that the ALDH1 subfamily has a central role in immune-mediated ocular mucosal scarring, and that ALDH inhibition with disulfiram is a potential and readily translatable antifibrotic therapy.
Sarah D. Ahadome, David J. Abraham, Suryanarayana Rayapureddi, Valerie P. Saw, Daniel R. Saban, Virginia L. Calder, Jill T. Norman, Markella Ponticos, Julie T. Daniels, John K. Dart
No posts were found with this tag.