Despite the efficacy of antiretroviral therapy (ART), HIV persists in a latent form and remains a hurdle to eradication. CD4+ T lymphocytes harbor the majority of the HIV reservoir, but the role of individual subsets remains unclear. CD4+ T cells were sorted into central, transitional, effector memory, and naive T cells. We measured HIV DNA and performed proviral sequencing of more than 1900 proviruses in 2 subjects at 2 and 9 years after ART initiation to estimate the contribution of each subset to the reservoir. Although our study was limited to 2 subjects, we obtained comparable findings with publicly available sequences. While the HIV integration levels were lower in naive compared with memory T cells, naive cells were a major contributor to the intact proviral reservoir. Notably, proviral sequences isolated from naive cells appeared to be unique, while those retrieved from effector memory cells were mainly clonal. The number of clones increased as cells differentiated from a naive to an effector memory phenotype, suggesting naive cells repopulate the effector memory reservoir as previously shown for central memory cells. Naive T cells contribute substantially to the intact HIV reservoir and represent a significant hurdle for HIV eradication.
Emmanuele Venanzi Rullo, Marilia Rita Pinzone, LaMont Cannon, Sam Weissman, Manuela Ceccarelli, Ryan Zurakowski, Giuseppe Nunnari, Una O’Doherty
Although congenital heart defects (CHDs) represent the most common birth defect, a comprehensive understanding of disease etiology remains unknown. This is further complicated since CHDs can occur in isolation or as a feature of another disorder. Analyzing disorders with associated CHDs provides a powerful platform to identify primary pathogenic mechanisms driving disease. Aberrant localization and expression of cathepsin proteases can perpetuate later-stage heart diseases, but their contribution toward CHDs is unclear. To investigate the contribution of cathepsins during cardiovascular development and congenital disease, we analyzed the pathogenesis of cardiac defects in zebrafish models of the lysosomal storage disorder mucolipidosis II (MLII). MLII is caused by mutations in the GlcNAc-1-phosphotransferase enzyme (Gnptab) that disrupt carbohydrate-dependent sorting of lysosomal enzymes. Without Gnptab, lysosomal hydrolases, including cathepsin proteases, are inappropriately secreted. Analyses of heart development in gnptab-deficient zebrafish show cathepsin K secretion increases its activity, disrupts TGF-β–related signaling, and alters myocardial and valvular formation. Importantly, cathepsin K inhibition restored normal heart and valve development in MLII embryos. Collectively, these data identify mislocalized cathepsin K as an initiator of cardiac disease in this lysosomal disorder and establish cathepsin inhibition as a viable therapeutic strategy.
Po-Nien Lu, Trevor Moreland, Courtney J. Christian, Troy C. Lund, Richard A. Steet, Heather Flanagan-Steet
Peptidylarginine deiminases (PADs) are a family of calcium-dependent enzymes that are involved in a variety of human disorders, including cancer and autoimmune diseases. Although targeting PAD4 has shown no benefit in sepsis, the role of PAD2 remains unknown. Here, we report that PAD2 is engaged in sepsis and sepsis-induced acute lung injury in both human patients and mice. Pad2–/– or selective inhibition of PAD2 by a small molecule inhibitor increased survival and improved overall outcomes in mouse models of sepsis. Pad2 deficiency decreased neutrophil extracellular trap (NET) formation. Importantly, Pad2 deficiency inhibited Caspase-11–dependent pyroptosis in vivo and in vitro. Suppression of PAD2 expression reduced inflammation and increased macrophage bactericidal activity. In contrast to Pad2–/–, Pad4 deficiency enhanced activation of Caspase-11–dependent pyroptosis in BM-derived macrophages and displayed no survival improvement in a mouse sepsis model. Collectively, our findings highlight the potential of PAD2 as an indicative marker and therapeutic target for sepsis.
Yuzi Tian, Shibin Qu, Hasan B. Alam, Aaron M. Williams, Zhenyu Wu, Qiufang Deng, Baihong Pan, Jing Zhou, Baoling Liu, Xiuzhen Duan, Jianjie Ma, Santanu Mondal, Paul R. Thompson, Kathleen A. Stringer, Theodore J. Standiford, Yongqing Li
Thalamic pain, a type of central poststroke pain, frequently occurs following ischemia/hemorrhage in the thalamus. Current treatment of this disorder is often ineffective, at least in part due to largely unknown mechanisms that underlie thalamic pain genesis. Here, we report that hemorrhage caused by microinjection of type IV collagenase or autologous whole blood into unilateral ventral posterior lateral nucleus and ventral posterior medial nucleus of the thalamus increased the expression of Fgr, a member of the Src family nonreceptor tyrosine kinases, at both mRNA and protein levels in thalamic microglia. Pharmacological inhibition or genetic knockdown of thalamic Fgr attenuated the hemorrhage-induced thalamic injury on the ipsilateral side and the development and maintenance of mechanical, heat, and cold pain hypersensitivities on the contralateral side. Mechanistically, the increased Fgr participated in hemorrhage-induced microglial activation and subsequent production of TNF-α likely through activation of both NF-κB and ERK1/2 pathways in thalamic microglia. Our findings suggest that Fgr is a key player in thalamic pain and a potential target for the therapeutic management of this disorder.
Tianfeng Huang, Ganglan Fu, Ju Gao, Yang Zhang, Weihua Cai, Shaogen Wu, Shushan Jia, Shangzhou Xia, Thomas Bachmann, Alex Bekker, Yuan-Xiang Tao
High-fat feeding (HFF) leads to gut dysbiosis through unclear mechanisms. We hypothesize that bile acids secreted in response to high-fat diets (HFDs) may act on intestinal Paneth cells, leading to gut dysbiosis. We found that HFF resulted in widespread taxonomic shifts in the bacteria of the ileal mucosa, characterized by depletion of Lactobacillus and enrichment of Akkermansia muciniphila, Clostridium XIVa, Ruminococcaceae, and Lachnospiraceae, which were prevented by the bile acid binder cholestyramine. Immunohistochemistry and in situ hybridization studies showed that G protein–coupled bile acid receptor (TGR5) expressed in Paneth cells was upregulated in the rats fed HFD or normal chow supplemented with cholic acid. This was accompanied by decreased lysozyme+ Paneth cells and α-defensin 5 and 6 and increased expression of XBP-1. Pretreatment with ER stress inhibitor 4PBA or with cholestyramine prevented these changes. Ileal explants incubated with deoxycholic acid or cholic acid caused a decrease in α-defensin 5 and 6 and an increase in XBP-1, which was prevented by TGR5 antibody or 4PBA. In conclusion, this is the first demonstration to our knowledge that TGR5 is expressed in Paneth cells. HFF resulted in increased bile acid secretion and upregulation of TGR5 expression in Paneth cells. Bile acid toxicity in Paneth cells contributes to gut dysbiosis induced by HFF.
Hui Zhou, Shi-Yi Zhou, Merritt Gillilland III, Ji-Yao Li, Allen Lee, Jun Gao, Guanpo Zhang, Xianjun Xu, Chung Owyang
Phenylalanine hydroxylase–deficient (PAH-deficient) phenylketonuria (PKU) results in systemic hyperphenylalaninemia, leading to neurotoxicity with severe developmental disabilities. Dietary phenylalanine (Phe) restriction prevents the most deleterious effects of hyperphenylalaninemia, but adherence to diet is poor in adult and adolescent patients, resulting in characteristic neurobehavioral phenotypes. Thus, an urgent need exists for new treatments. Additionally, rodent models of PKU do not adequately reflect neurocognitive phenotypes, and thus there is a need for improved animal models. To this end, we have developed PAH-null pigs. After selection of optimal CRISPR/Cas9 genome-editing reagents by using an in vitro cell model, zygote injection of 2 sgRNAs and Cas9 mRNA demonstrated deletions in preimplantation embryos, with embryo transfer to a surrogate leading to 2 founder animals. One pig was heterozygous for a PAH exon 6 deletion allele, while the other was compound heterozygous for deletions of exon 6 and of exons 6–7. The affected pig exhibited hyperphenylalaninemia (2000–5000 μM) that was treatable by dietary Phe restriction, consistent with classical PKU, along with juvenile growth retardation, hypopigmentation, ventriculomegaly, and decreased brain gray matter volume. In conclusion, we have established a large-animal preclinical model of PKU to investigate pathophysiology and to assess new therapeutic interventions.
Erik A. Koppes, Bethany K. Redel, Marie A. Johnson, Kristen J. Skvorak, Lina Ghaloul-Gonzalez, Megan E. Yates, Dale W. Lewis, Susanne M. Gollin, Yijen L. Wu, Shawn E. Christ, Martine Yerle, Angela Leshinski, Lee D. Spate, Joshua A. Benne, Stephanie L. Murphy, Melissa S. Samuel, Eric M. Walters, Sarah A. Hansen, Kevin D. Wells, Uta Lichter-Konecki, Robert A. Wagner, Joseph T. Newsome, Steven F. Dobrowolski, Jerry Vockley, Randall S. Prather, Robert D. Nicholls
Loss-of-function variants of protein tyrosine phosphatase non-receptor type 2 (PTPN2) enhance risk of inflammatory bowel disease and rheumatoid arthritis; however, whether the association between PTPN2 and autoimmune arthritis depends on gut inflammation is unknown. Here we demonstrate that induction of subclinical intestinal inflammation exacerbates development of autoimmune arthritis in SKG mice. Ptpn2-haploinsufficient SKG mice — modeling human carriers of disease-associated variants of PTPN2 — displayed enhanced colitis-induced arthritis and joint accumulation of Tregs expressing RAR-related orphan receptor γT (RORγt) — a gut-enriched Treg subset that can undergo conversion into FoxP3–IL-17+ arthritogenic exTregs. SKG colonic Tregs underwent higher conversion into arthritogenic exTregs when compared with peripheral Tregs, which was exacerbated by haploinsufficiency of Ptpn2. Ptpn2 haploinsufficiency led to selective joint accumulation of RORγt-expressing Tregs expressing the colonic marker G protein–coupled receptor 15 (GPR15) in arthritic mice and selectively enhanced conversion of GPR15+ Tregs into exTregs in vitro and in vivo. Inducible Treg-specific haploinsufficiency of Ptpn2 enhanced colitis-induced SKG arthritis and led to specific joint accumulation of GPR15+ exTregs. Our data validate the SKG model for studies at the interface between intestinal and joint inflammation and suggest that arthritogenic variants of PTPN2 amplify the link between gut inflammation and arthritis through conversion of colonic Tregs into exTregs.
Wan-Chen Hsieh, Mattias N.D. Svensson, Martina Zoccheddu, Michael L. Tremblay, Shimon Sakaguchi, Stephanie M. Stanford, Nunzio Bottini
Lupus nephritis (LN) is a major organ complication and cause of morbidity and mortality in patients with systemic lupus erythematosus (SLE). There is an unmet medical need for developing more efficient and specific, mechanism-based therapies, which depends on improved understanding of the underlying LN pathogenesis. Here we present direct visual evidence from high-power intravital imaging of the local kidney tissue microenvironment in mouse models showing that activated memory T cells originated in immune organs and the LN-specific robust accumulation of the glomerular endothelial glycocalyx played central roles in LN development. The glomerular homing of T cells was mediated via the direct binding of their CD44 to the hyaluronic acid (HA) component of the endothelial glycocalyx, and glycocalyx-degrading enzymes efficiently disrupted homing. Short-course treatment with either hyaluronidase or heparinase III provided long-term organ protection as evidenced by vastly improved albuminuria and survival rate. This glycocalyx/HA/memory T cell interaction is present in multiple SLE-affected organs and may be therapeutically targeted for SLE complications, including LN.
Hiroyuki Kadoya, Ning Yu, Ina Maria Schiessl, Anne Riquier-Brison, Georgina Gyarmati, Dorinne Desposito, Kengo Kidokoro, Matthew J. Butler, Chaim O. Jacob, János Peti-Peterdi
Hidradenitis suppurativa (HS) is a highly prevalent, morbid inflammatory skin disease with limited treatment options. The major cell types and inflammatory pathways in skin of patients with HS are poorly understood, and which patients will respond to TNF-α blockade is currently unknown. We discovered that clinically and histologically healthy appearing skin (i.e., nonlesional skin) is dysfunctional in patients with HS with a relative loss of immune regulatory pathways. HS skin lesions were characterized by quantitative and qualitative dysfunction of type 2 conventional dendritic cells, relatively reduced regulatory T cells, an influx of memory B cells, and a plasma cell/plasmablast infiltrate predominantly in end-stage fibrotic skin. At the molecular level, there was a relative bias toward the IL-1 pathway and type 1 T cell responses when compared with both healthy skin and psoriatic patient skin. Anti–TNF-α therapy markedly attenuated B cell activation with minimal effect on other inflammatory pathways. Finally, we identified an immune activation signature in skin before anti–TNF-α treatment that correlated with subsequent lack of response to this modality. Our results reveal the fundamental immunopathogenesis of HS and provide a molecular foundation for future studies focused on stratifying patients based on likelihood of clinical response to TNF-α blockade.
Margaret M. Lowe, Haley B. Naik, Sean Clancy, Mariela Pauli, Kathleen M. Smith, Yingtao Bi, Robert Dunstan, Johann E. Gudjonsson, Maia Paul, Hobart Harris, Esther Kim, Uk Sok Shin, Richard Ahn, Wilson Liao, Scott L. Hansen, Michael D. Rosenblum
Protein phosphatase 2A is a ubiquitously expressed serine/threonine phosphatase that comprises a scaffold, a catalytic, and multiple regulatory subunits and has been shown to be important in the expression of autoimmunity. We considered that a distinct subunit may account for the decreased production of IL-2 in people and mice with systemic autoimmunity. We show that the regulatory subunit PPP2R2D is increased in T cells from people with systemic lupus erythematosus and regulates IL-2 production. Mice lacking PPP2R2D only in T cells produce more IL-2 because the IL-2 gene and genes coding for IL-2–enhancing transcription factors remain open, while the levels of the enhancer phosphorylated CREB are high. Mice with T cell–specific PPP2R2D deficiency display less systemic autoimmunity when exposed to a TLR7 stimulator. While genes related to Treg function do not change in the absence of PPP2R2D, Tregs exhibit high suppressive function in vitro and in vivo. Because the ubiquitous expression of protein phosphatase 2A cannot permit systemic therapeutic manipulation, the identification of regulatory subunits able to control specific T cell functions opens the way for the development of novel, function-specific drugs.
Wenliang Pan, Amir Sharabi, Andrew Ferretti, Yinfeng Zhang, Catalina Burbano, Nobuya Yoshida, Maria G. Tsokos, George C. Tsokos
No posts were found with this tag.