Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Submit a comment

A modeling-based approach to optimize COVID-19 vaccine dosing schedules for improved protection
Prashant Dogra, Carmine Schiavone, Zhihui Wang, Javier Ruiz-Ramírez, Sergio Caserta, Daniela I. Staquicini, Christopher Markosian, Jin Wang, H. Dirk Sostman, Renata Pasqualini, Wadih Arap, Vittorio Cristini
Prashant Dogra, Carmine Schiavone, Zhihui Wang, Javier Ruiz-Ramírez, Sergio Caserta, Daniela I. Staquicini, Christopher Markosian, Jin Wang, H. Dirk Sostman, Renata Pasqualini, Wadih Arap, Vittorio Cristini
View: Text | PDF
Resource and Technical Advance COVID-19 Vaccines

A modeling-based approach to optimize COVID-19 vaccine dosing schedules for improved protection

  • Text
  • PDF
Abstract

While the development of different vaccines slowed the dissemination of SARS-CoV-2, the occurrence of breakthrough infections has continued to fuel the COVID-19 pandemic. To secure at least partial protection in the majority of the population through 1 dose of a COVID-19 vaccine, delayed administration of boosters has been implemented in many countries. However, waning immunity and emergence of new variants of SARS-CoV-2 suggest that such measures may induce breakthrough infections due to intermittent lapses in protection. Optimizing vaccine dosing schedules to ensure prolonged continuity in protection could thus help control the pandemic. We developed a mechanistic model of immune response to vaccines as an in silico tool for dosing schedule optimization. The model was calibrated with clinical data sets of acquired immunity to COVID-19 mRNA vaccines in healthy and immunocompromised participants and showed robust validation by accurately predicting neutralizing antibody kinetics in response to multiple doses of COVID-19 mRNA vaccines. Importantly, by estimating population vulnerability to breakthrough infections, we predicted tailored vaccination dosing schedules to minimize breakthrough infections, especially for immunocompromised individuals. We identified that the optimal vaccination schedules vary from CDC-recommended dosing, suggesting that the model is a valuable tool to optimize vaccine efficacy outcomes during future outbreaks.

Authors

Prashant Dogra, Carmine Schiavone, Zhihui Wang, Javier Ruiz-Ramírez, Sergio Caserta, Daniela I. Staquicini, Christopher Markosian, Jin Wang, H. Dirk Sostman, Renata Pasqualini, Wadih Arap, Vittorio Cristini

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts