Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Submit a comment

Deep learning–based molecular morphometrics for kidney biopsies
Marina Zimmermann, Martin Klaus, Milagros N. Wong, Ann-Katrin Thebille, Lukas Gernhold, Christoph Kuppe, Maurice Halder, Jennifer Kranz, Nicola Wanner, Fabian Braun, Sonia Wulf, Thorsten Wiech, Ulf Panzer, Christian F. Krebs, Elion Hoxha, Rafael Kramann, Tobias B. Huber, Stefan Bonn, Victor G. Puelles
Marina Zimmermann, Martin Klaus, Milagros N. Wong, Ann-Katrin Thebille, Lukas Gernhold, Christoph Kuppe, Maurice Halder, Jennifer Kranz, Nicola Wanner, Fabian Braun, Sonia Wulf, Thorsten Wiech, Ulf Panzer, Christian F. Krebs, Elion Hoxha, Rafael Kramann, Tobias B. Huber, Stefan Bonn, Victor G. Puelles
View: Text | PDF
Resource and Technical Advance Nephrology

Deep learning–based molecular morphometrics for kidney biopsies

  • Text
  • PDF
Abstract

Morphologic examination of tissue biopsies is essential for histopathological diagnosis. However, accurate and scalable cellular quantification in human samples remains challenging. Here, we present a deep learning–based approach for antigen-specific cellular morphometrics in human kidney biopsies, which combines indirect immunofluorescence imaging with U-Net–based architectures for image-to-image translation and dual segmentation tasks, achieving human-level accuracy. In the kidney, podocyte loss represents a hallmark of glomerular injury and can be estimated in diagnostic biopsies. Thus, we profiled over 27,000 podocytes from 110 human samples, including patients with antineutrophil cytoplasmic antibody–associated glomerulonephritis (ANCA-GN), an immune-mediated disease with aggressive glomerular damage and irreversible loss of kidney function. We identified previously unknown morphometric signatures of podocyte depletion in patients with ANCA-GN, which allowed patient classification and, in combination with routine clinical tools, showed potential for risk stratification. Our approach enables robust and scalable molecular morphometric analysis of human tissues, yielding deeper biological insights into the human kidney pathophysiology.

Authors

Marina Zimmermann, Martin Klaus, Milagros N. Wong, Ann-Katrin Thebille, Lukas Gernhold, Christoph Kuppe, Maurice Halder, Jennifer Kranz, Nicola Wanner, Fabian Braun, Sonia Wulf, Thorsten Wiech, Ulf Panzer, Christian F. Krebs, Elion Hoxha, Rafael Kramann, Tobias B. Huber, Stefan Bonn, Victor G. Puelles

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts