Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Submit a comment

Circulating mitochondrial DNA is an early indicator of severe illness and mortality from COVID-19
Davide Scozzi, Marlene Cano, Lina Ma, Dequan Zhou, Ji Hong Zhu, Jane A. O’Halloran, Charles Goss, Adriana M. Rauseo, Zhiyi Liu, Sanjaya K. Sahu, Valentina Peritore, Monica Rocco, Alberto Ricci, Rachele Amodeo, Laura Aimati, Mohsen Ibrahim, Ramsey Hachem, Daniel Kreisel, Philip A. Mudd, Hrishikesh S. Kulkarni, Andrew E. Gelman
Davide Scozzi, Marlene Cano, Lina Ma, Dequan Zhou, Ji Hong Zhu, Jane A. O’Halloran, Charles Goss, Adriana M. Rauseo, Zhiyi Liu, Sanjaya K. Sahu, Valentina Peritore, Monica Rocco, Alberto Ricci, Rachele Amodeo, Laura Aimati, Mohsen Ibrahim, Ramsey Hachem, Daniel Kreisel, Philip A. Mudd, Hrishikesh S. Kulkarni, Andrew E. Gelman
View: Text | PDF
Clinical Research and Public Health COVID-19 Immunology

Circulating mitochondrial DNA is an early indicator of severe illness and mortality from COVID-19

  • Text
  • PDF
Abstract

Background Mitochondrial DNA (MT-DNA) are intrinsically inflammatory nucleic acids released by damaged solid organs. Whether circulating cell-free MT-DNA quantitation could be used to predict the risk of poor COVID-19 outcomes remains undetermined.Methods We measured circulating MT-DNA levels in prospectively collected, cell-free plasma samples from 97 subjects with COVID-19 at hospital presentation. Our primary outcome was mortality. Intensive care unit (ICU) admission, intubation, vasopressor, and renal replacement therapy requirements were secondary outcomes. Multivariate regression analysis determined whether MT-DNA levels were independent of other reported COVID-19 risk factors. Receiver operating characteristic and area under the curve assessments were used to compare MT-DNA levels with established and emerging inflammatory markers of COVID-19.Results Circulating MT-DNA levels were highly elevated in patients who eventually died or required ICU admission, intubation, vasopressor use, or renal replacement therapy. Multivariate regression revealed that high circulating MT-DNA was an independent risk factor for these outcomes after adjusting for age, sex, and comorbidities. We also found that circulating MT-DNA levels had a similar or superior area under the curve when compared against clinically established measures of inflammation and emerging markers currently of interest as investigational targets for COVID-19 therapy.Conclusion These results show that high circulating MT-DNA levels are a potential early indicator for poor COVID-19 outcomes.Funding Washington University Institute of Clinical Translational Sciences COVID-19 Research Program and Washington University Institute of Clinical Translational Sciences (ICTS) NIH grant UL1TR002345.

Authors

Davide Scozzi, Marlene Cano, Lina Ma, Dequan Zhou, Ji Hong Zhu, Jane A. O’Halloran, Charles Goss, Adriana M. Rauseo, Zhiyi Liu, Sanjaya K. Sahu, Valentina Peritore, Monica Rocco, Alberto Ricci, Rachele Amodeo, Laura Aimati, Mohsen Ibrahim, Ramsey Hachem, Daniel Kreisel, Philip A. Mudd, Hrishikesh S. Kulkarni, Andrew E. Gelman

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts