Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Resource and Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact

Submit a comment

Predicting breast cancer response to neoadjuvant chemotherapy based on tumor vascular features in needle biopsies
Terisse A. Brocato, … , C. Jeffrey Brinker, Vittorio Cristini
Terisse A. Brocato, … , C. Jeffrey Brinker, Vittorio Cristini
Published March 5, 2019
Citation Information: JCI Insight. 2019;4(8):e126518. https://doi.org/10.1172/jci.insight.126518.
View: Text | PDF
Resource and Technical Advance Oncology

Predicting breast cancer response to neoadjuvant chemotherapy based on tumor vascular features in needle biopsies

  • Text
  • PDF
Abstract

In clinical breast cancer intervention, selection of the optimal treatment protocol based on predictive biomarkers remains an elusive goal. Here, we present a modeling tool to predict the likelihood of breast cancer response to neoadjuvant chemotherapy using patient-specific tumor vasculature biomarkers. A semiautomated analysis was implemented and performed on 3990 histological images from 48 patients, with 10–208 images analyzed for each patient. We applied a histology-based mathematical model to 30 resected primary breast cancer tumors and then evaluated a cohort of 18 patients undergoing neoadjuvant chemotherapy, collecting pre- and posttreatment pathology specimens and MRI data. We found that core biopsy samples can be used with acceptable accuracy to determine histological parameters representative of the whole tissue region. Analysis of model histology parameters obtained from tumor vasculature measurements, specifically diffusion distance divided by the radius of the drug-delivering blood vessel (L/rb) and blood volume fraction (BVF), provides a statistically significant separation of patients obtaining a pathologic complete response (pCR) from those who do not. With this model, it is feasible to evaluate primary breast tumor vasculature biomarkers in a patient-specific manner, thereby allowing a precision approach to breast cancer treatment.

Authors

Terisse A. Brocato, Ursa Brown-Glaberman, Zhihui Wang, Reed G. Selwyn, Colin M. Wilson, Edward F. Wyckoff, Lesley C. Lomo, Jennifer L. Saline, Anupama Hooda-Nehra, Renata Pasqualini, Wadih Arap, C. Jeffrey Brinker, Vittorio Cristini

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2023 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts