Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Citations to this article

Integrating light-sheet imaging with virtual reality to recapitulate developmental cardiac mechanics
Yichen Ding, Arash Abiri, Parinaz Abiri, Shuoran Li, Chih-Chiang Chang, Kyung In Baek, Jeffrey J. Hsu, Elias Sideris, Yilei Li, Juhyun Lee, Tatiana Segura, Thao P. Nguyen, Alexander Bui, René R. Sevag Packard, Peng Fei, Tzung K. Hsiai
Yichen Ding, Arash Abiri, Parinaz Abiri, Shuoran Li, Chih-Chiang Chang, Kyung In Baek, Jeffrey J. Hsu, Elias Sideris, Yilei Li, Juhyun Lee, Tatiana Segura, Thao P. Nguyen, Alexander Bui, René R. Sevag Packard, Peng Fei, Tzung K. Hsiai
View: Text | PDF
Resource and Technical Advance Cardiology

Integrating light-sheet imaging with virtual reality to recapitulate developmental cardiac mechanics

  • Text
  • PDF
Abstract

Currently, there is a limited ability to interactively study developmental cardiac mechanics and physiology. We therefore combined light-sheet fluorescence microscopy (LSFM) with virtual reality (VR) to provide a hybrid platform for 3D architecture and time-dependent cardiac contractile function characterization. By taking advantage of the rapid acquisition, high axial resolution, low phototoxicity, and high fidelity in 3D and 4D (3D spatial + 1D time or spectra), this VR-LSFM hybrid methodology enables interactive visualization and quantification otherwise not available by conventional methods, such as routine optical microscopes. We hereby demonstrate multiscale applicability of VR-LSFM to (a) interrogate skin fibroblasts interacting with a hyaluronic acid–based hydrogel, (b) navigate through the endocardial trabecular network during zebrafish development, and (c) localize gene therapy-mediated potassium channel expression in adult murine hearts. We further combined our batch intensity normalized segmentation algorithm with deformable image registration to interface a VR environment with imaging computation for the analysis of cardiac contraction. Thus, the VR-LSFM hybrid platform demonstrates an efficient and robust framework for creating a user-directed microenvironment in which we uncovered developmental cardiac mechanics and physiology with high spatiotemporal resolution.

Authors

Yichen Ding, Arash Abiri, Parinaz Abiri, Shuoran Li, Chih-Chiang Chang, Kyung In Baek, Jeffrey J. Hsu, Elias Sideris, Yilei Li, Juhyun Lee, Tatiana Segura, Thao P. Nguyen, Alexander Bui, René R. Sevag Packard, Peng Fei, Tzung K. Hsiai

×

Loading citation information...
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts