Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
Fine epitope signature of antibody neutralization breadth at the HIV-1 envelope CD4-binding site
Hao D. Cheng, … , Chris Bailey-Kellogg, Margaret E. Ackerman
Hao D. Cheng, … , Chris Bailey-Kellogg, Margaret E. Ackerman
Published March 8, 2018
Citation Information: JCI Insight. 2018;3(5):e97018. https://doi.org/10.1172/jci.insight.97018.
View: Text | PDF
Resource and Technical Advance AIDS/HIV Vaccines

Fine epitope signature of antibody neutralization breadth at the HIV-1 envelope CD4-binding site

  • Text
  • PDF
Abstract

Major advances in donor identification, antigen probe design, and experimental methods to clone pathogen-specific antibodies have led to an exponential growth in the number of newly characterized broadly neutralizing antibodies (bnAbs) that recognize the HIV-1 envelope glycoprotein. Characterization of these bnAbs has defined new epitopes and novel modes of recognition that can result in potent neutralization of HIV-1. However, the translation of envelope recognition profiles in biophysical assays into an understanding of in vivo activity has lagged behind, and identification of subjects and mAbs with potent antiviral activity has remained reliant on empirical evaluation of neutralization potency and breadth. To begin to address this discrepancy between recombinant protein recognition and virus neutralization, we studied the fine epitope specificity of a panel of CD4-binding site (CD4bs) antibodies to define the molecular recognition features of functionally potent humoral responses targeting the HIV-1 envelope site bound by CD4. Whereas previous studies have used neutralization data and machine-learning methods to provide epitope maps, here, this approach was reversed, demonstrating that simple binding assays of fine epitope specificity can prospectively identify broadly neutralizing CD4bs–specific mAbs. Building on this result, we show that epitope mapping and prediction of neutralization breadth can also be accomplished in the assessment of polyclonal serum responses. Thus, this study identifies a set of CD4bs bnAb signature amino acid residues and demonstrates that sensitivity to mutations at signature positions is sufficient to predict neutralization breadth of polyclonal sera with a high degree of accuracy across cohorts and across clades.

Authors

Hao D. Cheng, Sebastian K. Grimm, Morgan S.A. Gilman, Luc Christian Gwom, Devin Sok, Christopher Sundling, Gina Donofrio, Gunilla B. Karlsson Hedestam, Mattia Bonsignori, Barton F. Haynes, Timothy P. Lahey, Isaac Maro, C. Fordham von Reyn, Miroslaw K. Gorny, Susan Zolla-Pazner, Bruce D. Walker, Galit Alter, Dennis R. Burton, Merlin L. Robb, Shelly J. Krebs, Michael S. Seaman, Chris Bailey-Kellogg, Margaret E. Ackerman

×

Figure 3

Polyclonal sera epitope-mapping results.

Options: View larger image (or click on image) Download as PowerPoint
Polyclonal sera epitope-mapping results.
(A) Heatmap comparing epitope-m...
(A) Heatmap comparing epitope-mapping data from polyclonal sera from Boston area (Ragon Institute) HIV-infected subjects positive for YU2 gp120 core-specific antibodies clustered together with the mAb epitope maps. The vertical color bar indicates sample type: pAb samples are shown in white (n = 99), bnAbs in black (n = 10), vaccine-induced weakly neutralizing antibodies (viAbs, n = 6) in light gray, and infection-induced weakly neutralizing antibodies (wnAbs, n = 9) in dark gray. (B) Serum from a donor with a known bnAb (PGV04) was evaluated for binding to the epitope-mapping panel. The ability of the STG mutant to deplete core-specific antibodies without broad neutralization and to facilitate identification of the presence of CD4bs antibodies with broad neutralization was determined for the PGV04 donor serum and for PGV04-spiked HIVIG. Error bars, shown only for the enriched PGV04 serum, indicate SD observed between duplicate measurements. (C) Heatmap of polyclonal sera samples from a Tanzanian cohort (n = 10) before and after enrichment of potential bnAbs using the STG mutant-based depletion. Horizontal color bars indicate the class of core: core variants with substitutions made in CD4bs residues are indicated in green, core variants with substitutions made in other sites on the core are indicated in black.

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts