Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Resource and Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact

Usage Information

In vivo kinetics and nonradioactive imaging of rapidly proliferating cells in graft-versus-host disease
Nataliya P. Buxbaum, … , Remy J. Bosselut, Ronald E. Gress
Nataliya P. Buxbaum, … , Remy J. Bosselut, Ronald E. Gress
Published June 15, 2017
Citation Information: JCI Insight. 2017;2(12):e92851. https://doi.org/10.1172/jci.insight.92851.
View: Text | PDF
Resource and Technical Advance Immunology Transplantation

In vivo kinetics and nonradioactive imaging of rapidly proliferating cells in graft-versus-host disease

  • Text
  • PDF
Abstract

Hematopoietic stem cell transplantation (HSCT) offers a cure for cancers that are refractory to chemotherapy and radiation. Most HSCT recipients develop chronic graft-versus-host disease (cGVHD), a systemic alloimmune attack on host organs. Diagnosis is based on clinical signs and symptoms, as biopsies are risky. T cells are central to the biology of cGVHD. We found that a low Treg/CD4+ T effector memory (Tem) ratio in circulation, lymphoid, and target organs identified early and established mouse cGVHD. Using deuterated water labeling to measure multicompartment in vivo kinetics of these subsets, we show robust Tem and Treg proliferation in lymphoid and target organs, while Tregs undergo apoptosis in target organs. Since deuterium enrichment into DNA serves as a proxy for cell proliferation, we developed a whole-body clinically relevant deuterium MRI approach to nonradioactively detect cGVHD and potentially allow imaging of other diseases characterized by rapidly proliferating cells.

Authors

Nataliya P. Buxbaum, Donald E. Farthing, Natella Maglakelidze, Martin Lizak, Hellmut Merkle, Andrea C. Carpenter, Brittany U. Oliver, Veena Kapoor, Ehydel Castro, Gregory A. Swan, Liliane M. dos Santos, Nicolas J. Bouladoux, Catherine V. Bare, Francis A. Flomerfelt, Michael A. Eckhaus, William G. Telford, Yasmine Belkaid, Remy J. Bosselut, Ronald E. Gress

×

Usage data is cumulative from August 2021 through August 2022.

Usage JCI PMC
Text version 516 57
PDF 103 16
Figure 73 0
Supplemental data 12 0
Citation downloads 34 0
Totals 738 73
Total Views 811

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2022 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts