Systemic mitochondrial energy deficiency is implicated in the pathophysiology of many age-related human diseases. Currently available tools to estimate mitochondrial oxidative phosphorylation (OXPHOS) capacity in skeletal muscle in vivo lack high anatomic resolution. Muscle groups vary with respect to their contractile and metabolic properties. Therefore, muscle group–specific estimates of OXPHOS would be advantageous. To address this need, a noninvasive creatine chemical exchange saturation transfer (CrCEST) MRI technique has recently been developed, which provides a measure of free creatine. After exercise, skeletal muscle can be imaged with CrCEST in order to make muscle group–specific measurements of OXPHOS capacity, reflected in the recovery rate (τCr) of free Cr. In this study, we found that individuals with genetic mitochondrial diseases had significantly (
Catherine DeBrosse, Ravi Prakash Reddy Nanga, Neil Wilson, Kevin D’Aquilla, Mark Elliott, Hari Hariharan, Felicia Yan, Kristin Wade, Sara Nguyen, Diana Worsley, Chevonne Parris-Skeete, Elizabeth McCormick, Rui Xiao, Zuela Zolkipli Cunningham, Lauren Fishbein, Katherine L. Nathanson, David R. Lynch, Virginia A. Stallings, Marc Yudkoff, Marni J. Falk, Ravinder Reddy, Shana E. McCormack
Usage data is cumulative from December 2023 through December 2024.
Usage | JCI | PMC |
---|---|---|
Text version | 364 | 107 |
50 | 45 | |
Figure | 69 | 9 |
Table | 86 | 0 |
Supplemental data | 17 | 3 |
Citation downloads | 38 | 0 |
Totals | 624 | 164 |
Total Views | 788 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.