Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
Muscle oxidative phosphorylation quantitation using creatine chemical exchange saturation transfer (CrCEST) MRI in mitochondrial disorders
Catherine DeBrosse, … , Ravinder Reddy, Shana E. McCormack
Catherine DeBrosse, … , Ravinder Reddy, Shana E. McCormack
Published November 3, 2016
Citation Information: JCI Insight. 2016;1(18):e88207. https://doi.org/10.1172/jci.insight.88207.
View: Text | PDF
Resource and Technical Advance Metabolism Article has an altmetric score of 2

Muscle oxidative phosphorylation quantitation using creatine chemical exchange saturation transfer (CrCEST) MRI in mitochondrial disorders

  • Text
  • PDF
Abstract

Systemic mitochondrial energy deficiency is implicated in the pathophysiology of many age-related human diseases. Currently available tools to estimate mitochondrial oxidative phosphorylation (OXPHOS) capacity in skeletal muscle in vivo lack high anatomic resolution. Muscle groups vary with respect to their contractile and metabolic properties. Therefore, muscle group–specific estimates of OXPHOS would be advantageous. To address this need, a noninvasive creatine chemical exchange saturation transfer (CrCEST) MRI technique has recently been developed, which provides a measure of free creatine. After exercise, skeletal muscle can be imaged with CrCEST in order to make muscle group–specific measurements of OXPHOS capacity, reflected in the recovery rate (τCr) of free Cr. In this study, we found that individuals with genetic mitochondrial diseases had significantly (P = 0.026) prolonged postexercise τCr in the medial gastrocnemius muscle, suggestive of less OXPHOS capacity. Additionally, we observed that lower resting CrCEST was associated with prolonged τPCr, with a Pearson’s correlation coefficient of –0.42 (P = 0.046), consistent with previous hypotheses predicting that resting creatine levels may correlate with 31P magnetic resonance spectroscopy–based estimates of OXPHOS capacity. We conclude that CrCEST can noninvasively detect changes in muscle creatine content and OXPHOS capacity, with high anatomic resolution, in individuals with mitochondrial disorders.

Authors

Catherine DeBrosse, Ravi Prakash Reddy Nanga, Neil Wilson, Kevin D’Aquilla, Mark Elliott, Hari Hariharan, Felicia Yan, Kristin Wade, Sara Nguyen, Diana Worsley, Chevonne Parris-Skeete, Elizabeth McCormick, Rui Xiao, Zuela Zolkipli Cunningham, Lauren Fishbein, Katherine L. Nathanson, David R. Lynch, Virginia A. Stallings, Marc Yudkoff, Marni J. Falk, Ravinder Reddy, Shana E. McCormack

×
Options: View larger image (or click on image) Download as PowerPoint
Creatine chemical exchange saturation transfer (CrCEST) MRI results

Creatine chemical exchange saturation transfer (CrCEST) MRI results


Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts

Posted by 5 X users
51 readers on Mendeley
See more details