Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
Targeting CLEC9A delivers antigen to human CD141+ DC for CD4+ and CD8+T cell recognition
Kirsteen M. Tullett, Ingrid M. Leal Rojas, Yoshihito Minoda, Peck S. Tan, Jian-Guo Zhang, Corey Smith, Rajiv Khanna, Ken Shortman, Irina Caminschi, Mireille H. Lahoud, Kristen J. Radford
Kirsteen M. Tullett, Ingrid M. Leal Rojas, Yoshihito Minoda, Peck S. Tan, Jian-Guo Zhang, Corey Smith, Rajiv Khanna, Ken Shortman, Irina Caminschi, Mireille H. Lahoud, Kristen J. Radford
View: Text | PDF
Resource and Technical Advance Immunology Vaccines

Targeting CLEC9A delivers antigen to human CD141+ DC for CD4+ and CD8+T cell recognition

  • Text
  • PDF
Abstract

DC-based vaccines that initiate T cell responses are well tolerated and have demonstrated efficacy for tumor immunotherapy, with the potential to be combined with other therapies. Targeting vaccine antigens (Ag) directly to the DCs in vivo is more effective than cell-based therapies in mouse models and is therefore a promising strategy to translate to humans. The human CD141+ DCs are considered the most clinically relevant for initiating CD8+ T cell responses critical for killing tumors or infected cells, and they specifically express the C-type lectin-like receptor CLEC9A that facilitates presentation of Ag by these DCs. We have therefore developed a human chimeric Ab that specifically targets CLEC9A on CD141+ DCs in vitro and in vivo. These human chimeric Abs are highly effective at delivering Ag to DCs for recognition by both CD4+ and CD8+ T cells. Given the importance of these cellular responses for antitumor or antiviral immunity, and the superior specificity of anti-CLEC9A Abs for this DC subset, this approach warrants further development for vaccines.

Authors

Kirsteen M. Tullett, Ingrid M. Leal Rojas, Yoshihito Minoda, Peck S. Tan, Jian-Guo Zhang, Corey Smith, Rajiv Khanna, Ken Shortman, Irina Caminschi, Mireille H. Lahoud, Kristen J. Radford

×

Figure 4

Targeting of human DCs in vivo with human chimeric Ab in huNSG-A2 mice.

Options: View larger image (or click on image) Download as PowerPoint
Targeting of human DCs in vivo with human chimeric Ab in huNSG-A2 mice.
...
(A) Binding of Alexa Fluor 488–labeled (AF 488-labeled) human chimeric Ab to human lymphocyte subsets following i.v. injection into huNSG-A2 mice; representative of 3 experiments. (B) Serum concentrations of human chimeric Ab in huNSG-A2 mice as measured by ELISA at indicated time points. Data are shown as a mean percentage ± SD of 3 independent experiments. **P < 0.01 (24 and 48 hours; isotype vs. CLEC9A and DEC-205), ***P < 0.001 (72 hours; isotype vs. CLEC9A and DEC-205), ****P < 0.0001 (8 hours; isotype vs. CLEC9A and DEC-205), 2-way ANOVA, Tukey’s multiple comparisons test.

Copyright © 2026 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts