Long COVID is a debilitating condition that can develop after a SARS-CoV-2 infection and is characterized by a wide range of chronic symptoms, including weakness, neurocognitive impairment, malaise, fatigue, and many others, that affect multiple organ systems. At least 10% of individuals with a previous infection may develop long COVID, which affects their ability to perform daily functions and work. Despite its severity and widespread impact, this multisystemic condition remains poorly understood. Recent studies suggest that dysregulation of the complement system, a key component of the innate immune response, may contribute to the pathogenesis of long COVID, particularly in connection with coagulation, inflammation, and vascular injury. In this Review, we examine the evidence linking complement system dysregulation to long COVID and explore its potential role in driving disease pathology.
Rafael Bayarri-Olmos, William Bain, Akiko Iwasaki
Usage data is cumulative from August 2025 through December 2025.
| Usage | JCI | PMC |
|---|---|---|
| Text version | 4,245 | 234 |
| 611 | 48 | |
| Figure | 803 | 0 |
| Table | 181 | 0 |
| Citation downloads | 133 | 0 |
| Totals | 5,973 | 282 |
| Total Views | 6,255 | |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.