MD-PhD programs prepare physicians for research-focused careers. The challenge for admissions committees is to select from among their applicants those who will achieve this goal, becoming leaders in academic medicine and biomedical research. Although holistic practices are encouraged, the temptation remains to use metrics such as grade point average, Medical College Admission Test scores, and postbaccalaureate gap length, combined with race and ethnicity, age at college graduation, and sex to select whom to interview and admit. Here, we asked whether any of these metrics predict performance in training or career paths after graduation. Data were drawn from the National MD-PhD Program Outcomes Study with information on 4,659 alumni and 593 MD-PhD graduates of the Albert Einstein College of Medicine and the University of Pennsylvania. The Penn-Einstein dataset included admissions committee summative scores, attrition, and the number and impact of PhD publications. Output metrics included time to degree, eventual employment in workplaces consistent with MD-PhD training goals, and self-reported research effort. Data were analyzed using machine learning and multivariate linear regression. The results show that none of the applicant metrics, individually or collectively, predicted in-program performance, future research effort, or eventual workplace choices even when comparisons were limited to those in the top and bottom quintiles.
Lawrence F. Brass, Maurizio Tomaiuolo, Aislinn Wallace, Myles H. Akabas
Usage data is cumulative from March 2025 through December 2025.
| Usage | JCI | PMC |
|---|---|---|
| Text version | 4,536 | 322 |
| 682 | 23 | |
| Figure | 540 | 0 |
| Table | 166 | 0 |
| Supplemental data | 198 | 4 |
| Citation downloads | 179 | 0 |
| Totals | 6,301 | 349 |
| Total Views | 6,650 | |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.