Abstract

Alloreactive memory, unlike naive, CD8+ T cells resist transplantation tolerance protocols and are a critical barrier to long-term graft acceptance in the clinic. We here show that semiallogeneic pregnancy successfully reprogrammed memory fetus/graft-specific CD8+ T cells (TFGS) toward hypofunction. Female C57BL/6 mice harboring memory CD8+ T cells generated by the rejection of BALB/c skin grafts and then mated with BALB/c males achieved rates of pregnancy comparable with naive controls. Postpartum CD8+ TFGS from skin-sensitized dams upregulated expression of T cell exhaustion (TEX) markers (Tox, Eomes, PD-1, TIGIT, and Lag3). Transcriptional analysis corroborated an enrichment of canonical TEX genes in postpartum memory TFGS and revealed a downregulation of a subset of memory-associated transcripts. Strikingly, pregnancy induced extensive epigenetic modifications of exhaustion- and memory-associated genes in memory TFGS, whereas minimal epigenetic modifications were observed in naive TFGS. Finally, postpartum memory TFGS durably expressed the exhaustion-enriched phenotype, and their susceptibility to transplantation tolerance was significantly restored compared with memory TFGS. These findings advance the concept of pregnancy as an epigenetic modulator inducing hypofunction in memory CD8+ T cells that has relevance not only for pregnancy and transplantation tolerance, but also for tumor immunity and chronic infections.

Authors

Jared M. Pollard, Grace Hynes, Dengping Yin, Malay Mandal, Fotini Gounari, Maria-Luisa Alegre, Anita S. Chong

×

Download this citation for these citation managers:

Or, download this citation in these formats:

If you experience problems using these citation formats, send us feedback.

Advertisement