Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Usage Information

Postprandial metabolism of apolipoproteins B48, B100, C-III, and E in humans with APOC3 loss-of-function mutations
Marja-Riitta Taskinen, Elias Björnson, Niina Matikainen, Sanni Söderlund, Joel Rämö, Mari-Mia Ainola, Antti Hakkarainen, Carina Sihlbom, Annika Thorsell, Linda Andersson, Per-Olof Bergh, Marcus Henricsson, Stefano Romeo, Martin Adiels, Samuli Ripatti, Markku Laakso, Chris J. Packard, Jan Borén
Marja-Riitta Taskinen, Elias Björnson, Niina Matikainen, Sanni Söderlund, Joel Rämö, Mari-Mia Ainola, Antti Hakkarainen, Carina Sihlbom, Annika Thorsell, Linda Andersson, Per-Olof Bergh, Marcus Henricsson, Stefano Romeo, Martin Adiels, Samuli Ripatti, Markku Laakso, Chris J. Packard, Jan Borén
View: Text | PDF
Clinical Research and Public Health Metabolism

Postprandial metabolism of apolipoproteins B48, B100, C-III, and E in humans with APOC3 loss-of-function mutations

  • Text
  • PDF
Abstract

Background Apolipoprotein C-III (apoC-III) is a regulator of triglyceride (TG) metabolism, and due to its association with risk of cardiovascular disease, is an emergent target for pharmacological intervention. The impact of substantially lowering apoC-III on lipoprotein metabolism is not clear.Methods We investigated the kinetics of apolipoproteins B48 and B100 (apoB48 and apoB100) in chylomicrons, VLDL1, VLDL2, IDL, and LDL in patients heterozygous for a loss-of-function (LOF) mutation in the APOC3 gene. Studies were conducted in the postprandial state to provide a more comprehensive view of the influence of this protein on TG transport.Results Compared with non-LOF variant participants, a genetically determined decrease in apoC-III resulted in marked acceleration of lipolysis of TG-rich lipoproteins (TRLs), increased removal of VLDL remnants from the bloodstream, and substantial decrease in circulating levels of VLDL1, VLDL2, and IDL particles. Production rates for apoB48-containing chylomicrons and apoB100-containing VLDL1 and VLDL2 were not different between LOF carriers and noncarriers. Likewise, the rate of production of LDL was not affected by the lower apoC-III level, nor were the concentration and clearance rate of LDL-apoB100.Conclusion These findings indicate that apoC-III lowering will have a marked effect on TRL and remnant metabolism, with possibly significant consequences for cardiovascular disease prevention.Trial registration ClinicalTrials.gov NCT04209816 and NCT01445730.Funding Swedish Heart-Lung Foundation, Swedish Research Council, ALF grant from the Sahlgrenska University Hospital, Novo Nordisk Foundation, Sigrid Juselius Foundation, Helsinki University Hospital Government Research funds, Finnish Heart Foundation, and Finnish Diabetes Research Foundation.

Authors

Marja-Riitta Taskinen, Elias Björnson, Niina Matikainen, Sanni Söderlund, Joel Rämö, Mari-Mia Ainola, Antti Hakkarainen, Carina Sihlbom, Annika Thorsell, Linda Andersson, Per-Olof Bergh, Marcus Henricsson, Stefano Romeo, Martin Adiels, Samuli Ripatti, Markku Laakso, Chris J. Packard, Jan Borén

×

Usage data is cumulative from December 2024 through December 2025.

Usage JCI PMC
Text version 814 166
PDF 109 47
Figure 124 0
Table 106 0
Supplemental data 89 0
Citation downloads 50 0
Totals 1,292 213
Total Views 1,505

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts