Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Usage Information

Multiple sclerosis therapies differentially affect SARS-CoV-2 vaccine–induced antibody and T cell immunity and function
Joseph J. Sabatino Jr., Kristen Mittl, William M. Rowles, Kira McPolin, Jayant V. Rajan, Matthew T. Laurie, Colin R. Zamecnik, Ravi Dandekar, Bonny D. Alvarenga, Rita P. Loudermilk, Chloe Gerungan, Collin M. Spencer, Sharon A. Sagan, Danillo G. Augusto, Jessa R. Alexander, Joseph L. DeRisi, Jill A. Hollenbach, Michael R. Wilson, Scott S. Zamvil, Riley Bove
Joseph J. Sabatino Jr., Kristen Mittl, William M. Rowles, Kira McPolin, Jayant V. Rajan, Matthew T. Laurie, Colin R. Zamecnik, Ravi Dandekar, Bonny D. Alvarenga, Rita P. Loudermilk, Chloe Gerungan, Collin M. Spencer, Sharon A. Sagan, Danillo G. Augusto, Jessa R. Alexander, Joseph L. DeRisi, Jill A. Hollenbach, Michael R. Wilson, Scott S. Zamvil, Riley Bove
View: Text | PDF
Clinical Research and Public Health COVID-19

Multiple sclerosis therapies differentially affect SARS-CoV-2 vaccine–induced antibody and T cell immunity and function

  • Text
  • PDF
Abstract

BACKGROUND Vaccine-elicited adaptive immunity is a prerequisite for control of SARS-CoV-2 infection. Multiple sclerosis (MS) disease-modifying therapies (DMTs) differentially target humoral and cellular immunity. A comprehensive comparison of the effects of MS DMTs on SARS-CoV-2 vaccine–specific immunity is needed, including quantitative and functional B and T cell responses.METHODS Spike-specific Ab and T cell responses were measured before and following SARS-CoV-2 vaccination in a cohort of 80 study participants, including healthy controls and patients with MS in 6 DMT groups: untreated and treated with glatiramer acetate (GA), dimethyl fumarate (DMF), natalizumab (NTZ), sphingosine-1-phosphate (S1P) receptor modulators, and anti-CD20 mAbs. Anti–spike-Ab responses were assessed by Luminex assay, VirScan, and pseudovirus neutralization. Spike-specific CD4+ and CD8+ T cell responses were characterized by activation-induced marker and cytokine expression and tetramer.RESULTS Anti-spike IgG levels were similar between healthy control participants and patients with untreated MS and those receiving GA, DMF, or NTZ but were reduced in anti-CD20 mAb– and S1P-treated patients. Anti-spike seropositivity in anti-CD20 mAb–treated patients was correlated with CD19+ B cell levels and inversely correlated with cumulative treatment duration. Spike epitope reactivity and pseudovirus neutralization were reduced in anti-CD20 mAb– and S1P-treated patients. Spike-specific CD4+ and CD8+ T cell reactivity remained robust across all groups, except in S1P-treated patients, in whom postvaccine CD4+ T cell responses were attenuated.CONCLUSION These findings from a large cohort of patients with MS exposed to a wide spectrum of MS immunotherapies have important implications for treatment-specific COVID-19 clinical guidelines.FUNDING NIH grants 1K08NS107619, K08NS096117, R01AI159260, R01NS092835, R01AI131624, and R21NS108159; NMSS grants TA-1903-33713 and RG1701-26628; Westridge Foundation; Chan Zuckerberg Biohub; Maisin Foundation.

Authors

Joseph J. Sabatino Jr., Kristen Mittl, William M. Rowles, Kira McPolin, Jayant V. Rajan, Matthew T. Laurie, Colin R. Zamecnik, Ravi Dandekar, Bonny D. Alvarenga, Rita P. Loudermilk, Chloe Gerungan, Collin M. Spencer, Sharon A. Sagan, Danillo G. Augusto, Jessa R. Alexander, Joseph L. DeRisi, Jill A. Hollenbach, Michael R. Wilson, Scott S. Zamvil, Riley Bove

×

Usage data is cumulative from December 2024 through December 2025.

Usage JCI PMC
Text version 863 158
PDF 119 21
Figure 209 0
Table 33 0
Supplemental data 92 1
Citation downloads 100 0
Totals 1,416 180
Total Views 1,596
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts