Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
Human intestinal lipid storage through sequential meals reveals faster dinner appearance is associated with hyperlipidemia
Miriam Jacome-Sosa, … , Robert D. Phair, Elizabeth J. Parks
Miriam Jacome-Sosa, … , Robert D. Phair, Elizabeth J. Parks
Published August 9, 2021
Citation Information: JCI Insight. 2021;6(15):e148378. https://doi.org/10.1172/jci.insight.148378.
View: Text | PDF
Clinical Research and Public Health Metabolism

Human intestinal lipid storage through sequential meals reveals faster dinner appearance is associated with hyperlipidemia

  • Text
  • PDF
Abstract

Background It is increasingly recognized that intestinal cells can store lipids after a meal, yet the effect of this phenomenon on lipid absorption patterns in insulin resistance remains unknown.Methods The kinetics of meal fat appearance were measured in insulin-sensitive (IS, n = 8) and insulin-resistant (IR, n = 8) subjects after sequential, isotopically labeled lunch and dinner meals. Plasma dynamics on triacylglycerol-rich (TAG-rich) lipoproteins and plasma hormones were analyzed using a nonlinear, non–steady state kinetic model.Results At the onset of dinner, IS subjects showed an abrupt plasma appearance of lunch lipid consistent with the “second-meal effect,” followed by slower appearance of dinner fat in plasma, resulting in reduced accumulation of dinner TAG of 48% compared with lunch. By contrast, IR subjects exhibited faster meal TAG appearance rates after both lunch and dinner. This effect of lower enterocyte storage between meals was associated with greater nocturnal and next-morning hyperlipidemia. The biochemical data and the kinetic analysis of second-meal effect dynamics are consistent with rapid secretion of stored TAG bypassing lipolysis and resynthesis. In addition, the data are consistent with a role for the diurnal pattern of plasma leptin in regulating the processing of dietary lipid.Conclusion These data support the concept that intestinal lipid storage may be physiologically beneficial in IS subjects.Trial registration ClinicalTrials.gov NCT02020343.Funding This study was supported by a grant from the American Diabetes Association (grant 1-13-TS-12).

Authors

Miriam Jacome-Sosa, Qiong Hu, Camila M. Manrique-Acevedo, Robert D. Phair, Elizabeth J. Parks

×

Systems Biology Markup Language file 1 - Download (78.16 KB)

No preview available for this file type: sbml
Use the download link to access the file.
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts