Diagnosis of organ transplant rejection relies upon biopsy approaches to confirm alloreactive T cell infiltration in the graft. Immune molecular monitoring is under investigation to screen for rejection, though these techniques have suffered from low specificity and lack of spatial information. ImmunoPET utilizing antibodies conjugated to radioisotopes has the potential to improve early and accurate detection of graft rejection. ImmunoPET is capable of noninvasively visualizing the dynamic distribution of cells expressing specific immune markers in the entire body over time. In this work, we identify and characterize OX40 as a surrogate biomarker for alloreactive T cells in organ transplant rejection and monitor its expression by utilizing immunoPET. In a dual murine heart transplant model that has both syngeneic and allogeneic hearts engrafted in bilateral ear pinna on the recipients, OX40 immunoPET clearly depicted alloreactive T cells in the allograft and draining lymph node that were not observed in their respective isograft counterparts. OX40 immunoPET signals also reflected the subject’s immunosuppression level with tacrolimus in this study. OX40 immunoPET is a promising approach that may bridge molecular monitoring and morphological assessment for improved transplant rejection diagnosis.
Toshihito Hirai, Aaron T. Mayer, Tomomi W. Nobashi, Po-Yu Lin, Zunyu Xiao, Tomokatsu Udagawa, Kinya Seo, Federico Simonetta, Jeanette Baker, Alan G. Cheng, Robert S. Negrin, Sanjiv S. Gambhir
Usage data is cumulative from June 2022 through June 2023.
Usage | JCI | PMC |
---|---|---|
Text version | 1,288 | 242 |
137 | 106 | |
Figure | 212 | 3 |
Supplemental data | 88 | 1 |
Citation downloads | 55 | 0 |
Totals | 1,780 | 352 |
Total Views | 2,132 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.