Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
Exercise intolerance and rapid skeletal muscle energetic decline in human age-associated frailty
Sabra C. Lewsey, Kilian Weiss, Michael Schär, Yi Zhang, Paul A. Bottomley, T. Jake Samuel, Qian-Li Xue, Angela Steinberg, Jeremy D. Walston, Gary Gerstenblith, Robert G. Weiss
Sabra C. Lewsey, Kilian Weiss, Michael Schär, Yi Zhang, Paul A. Bottomley, T. Jake Samuel, Qian-Li Xue, Angela Steinberg, Jeremy D. Walston, Gary Gerstenblith, Robert G. Weiss
View: Text | PDF
Clinical Research and Public Health Aging

Exercise intolerance and rapid skeletal muscle energetic decline in human age-associated frailty

  • Text
  • PDF
Abstract

BACKGROUND Physical frailty in older individuals is characterized by subjective symptoms of fatigue and exercise intolerance (EI). Objective abnormalities in skeletal muscle (SM) mitochondrial high-energy phosphate (HEP) metabolism contribute to EI in inherited myopathies; however, their presence or link to EI in the frail older adult is unknown.METHODS Here, we studied 3 groups of ambulatory, community-dwelling adults with no history of significant coronary disease: frail older (FO) individuals (81 ± 2.7 years, mean ± SEM), nonfrail older (NFO) individuals (79 ± 2.0 years), and healthy middle-aged individuals, who served as controls (CONT, 51 ± 2.1 years). Lower extremity SM HEP levels and mitochondrial function were measured with 31P magnetic resonance (MR) techniques during graded multistage plantar flexion exercise (PFE). EI was quantified by a 6-minute walk (6MW) and peak oxygen consumption during cardiopulmonary testing (peak VO2).RESULTS During graded exercise, FO, NFO, and CONT individuals all fatigued at similar SM HEP levels, as measured by 31P-MR. However, FO individuals fatigued fastest, with several-fold higher rates of PFE-induced HEP decline that correlated closely with shorter exercise duration in the MR scanner and with 6MW distance and lower peak oxygen consumption on cardiopulmonary testing (P < 0.001 for all). SM mitochondrial oxidative capacity was lower in older individuals and correlated with rapid HEP decline but less closely with EI.CONCLUSION Several-fold faster SM energetic decline during exercise occurs in FO individuals and correlates closely with multiple measures of EI. Rapid energetic decline represents an objective, functional measure of SM metabolic changes and a potential new target for mitigating frailty-associated physical limitations.FUNDING This work was supported by NIH R21 AG045634, R01 AG063661, R01 HL61912, the Johns Hopkins University Claude D. Pepper Older Americans Independence Center P30AG021334, and the Clarence Doodeman Endowment in Cardiology at Johns Hopkins.

Authors

Sabra C. Lewsey, Kilian Weiss, Michael Schär, Yi Zhang, Paul A. Bottomley, T. Jake Samuel, Qian-Li Xue, Angela Steinberg, Jeremy D. Walston, Gary Gerstenblith, Robert G. Weiss

×

Figure 4

Rapid exercise-induced energetic decline and functional capacity.

Options: View larger image (or click on image) Download as PowerPoint
Rapid exercise-induced energetic decline and functional capacity.
Both t...
Both the average rate of PCr decline during all of PFE (A) and the initial rate of PCr decline during the first 4 minutes of PFE (B) were significantly faster in frail older individuals (open squares) than in nonfrail older (dark-gray circles), and healthy middle-aged participants (black triangles). (C) Short exercise time was strongly associated with rapid energetic decline in that there was an inverse correlation between PFE time and the rate of PCr decline (P < 0.0001). Total work performed during PFE (D), 6-minute walk distance (E), and peak VO2 (F), all correlated inversely and significantly with the rate of PCr decline during exercise. CONT (n = 11, black triangles), NFO (n = 12, dark-gray circles), FO (n = 11, open squares). Data are individuals points and shown as mean ± SEM. Kruskal-Wallis ANOVA with Mann-Whitney U tests and Spearman’s correlations were used. *P < 0.05, **P < 0.02, ***P < 0.005, ****P < 0.001.

Copyright © 2026 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts