Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising/recruitment
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising/recruitment
  • Contact

Usage Information

Versatile workflow for cell type–resolved transcriptional and epigenetic profiles from cryopreserved human lung
Maria Llamazares-Prada, … , Christoph Plass, Renata Z. Jurkowska
Maria Llamazares-Prada, … , Christoph Plass, Renata Z. Jurkowska
Published February 25, 2021
Citation Information: JCI Insight. 2021;6(6):e140443. https://doi.org/10.1172/jci.insight.140443.
View: Text | PDF
Technical Advance Pulmonology

Versatile workflow for cell type–resolved transcriptional and epigenetic profiles from cryopreserved human lung

  • Text
  • PDF
Abstract

Complexity of lung microenvironment and changes in cellular composition during disease make it exceptionally hard to understand molecular mechanisms driving development of chronic lung diseases. Although recent advances in cell type–resolved approaches hold great promise for studying complex diseases, their implementation relies on local access to fresh tissue, as traditional tissue storage methods do not allow viable cell isolation. To overcome these hurdles, we developed a versatile workflow that allows storage of lung tissue with high viability, permits thorough sample quality check before cell isolation, and befits sequencing-based profiling. We demonstrate that cryopreservation enables isolation of multiple cell types from both healthy and diseased lungs. Basal cells from cryopreserved airways retain their differentiation ability, indicating that cellular identity is not altered by cryopreservation. Importantly, using RNA sequencing and EPIC Array, we show that gene expression and DNA methylation signatures are preserved upon cryopreservation, emphasizing the suitability of our workflow for omics profiling of lung cells. Moreover, we obtained high-quality single-cell RNA-sequencing data of cells from cryopreserved human lungs, demonstrating that cryopreservation empowers single-cell approaches. Overall, thanks to its simplicity, our workflow is well suited for prospective tissue collection by academic collaborators and biobanks, opening worldwide access to viable human tissue.

Authors

Maria Llamazares-Prada, Elisa Espinet, Vedrana Mijošek, Uwe Schwartz, Pavlo Lutsik, Raluca Tamas, Mandy Richter, Annika Behrendt, Stephanie T. Pohl, Naja P. Benz, Thomas Muley, Arne Warth, Claus Peter Heußel, Hauke Winter, Jonathan J. M. Landry, Felix J.F. Herth, Tinne C.J. Mertens, Harry Karmouty-Quintana, Ina Koch, Vladimir Benes, Jan O. Korbel, Sebastian M. Waszak, Andreas Trumpp, David M. Wyatt, Heiko F. Stahl, Christoph Plass, Renata Z. Jurkowska

×

Usage data is cumulative from February 2021 through April 2021.

Usage JCI PMC
Text version 1,470 0
PDF 338 0
Figure 94 0
Table 18 0
Supplemental data 133 0
Citation downloads 30 0
Totals 2,083 0
Total Views 2,083

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2021 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts