Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Usage Information

COVID-19 infection alters kynurenine and fatty acid metabolism, correlating with IL-6 levels and renal status
Tiffany Thomas, Davide Stefanoni, Julie A. Reisz, Travis Nemkov, Lorenzo Bertolone, Richard O. Francis, Krystalyn E. Hudson, James C. Zimring, Kirk C. Hansen, Eldad A. Hod, Steven L. Spitalnik, Angelo D’Alessandro
Tiffany Thomas, Davide Stefanoni, Julie A. Reisz, Travis Nemkov, Lorenzo Bertolone, Richard O. Francis, Krystalyn E. Hudson, James C. Zimring, Kirk C. Hansen, Eldad A. Hod, Steven L. Spitalnik, Angelo D’Alessandro
View: Text | PDF
Clinical Research and Public Health COVID-19 Metabolism

COVID-19 infection alters kynurenine and fatty acid metabolism, correlating with IL-6 levels and renal status

  • Text
  • PDF
Abstract

BACKGROUND Reprogramming of host metabolism supports viral pathogenesis by fueling viral proliferation, by providing, for example, free amino acids and fatty acids as building blocks.METHODS To investigate metabolic effects of SARS-CoV-2 infection, we evaluated serum metabolites of patients with COVID-19 (n = 33; diagnosed by nucleic acid testing), as compared with COVID-19–negative controls (n = 16).RESULTS Targeted and untargeted metabolomics analyses identified altered tryptophan metabolism into the kynurenine pathway, which regulates inflammation and immunity. Indeed, these changes in tryptophan metabolism correlated with interleukin-6 (IL-6) levels. Widespread dysregulation of nitrogen metabolism was also seen in infected patients, with altered levels of most amino acids, along with increased markers of oxidant stress (e.g., methionine sulfoxide, cystine), proteolysis, and renal dysfunction (e.g., creatine, creatinine, polyamines). Increased circulating levels of glucose and free fatty acids were also observed, consistent with altered carbon homeostasis. Interestingly, metabolite levels in these pathways correlated with clinical laboratory markers of inflammation (i.e., IL-6 and C-reactive protein) and renal function (i.e., blood urea nitrogen).CONCLUSION In conclusion, this initial observational study identified amino acid and fatty acid metabolism as correlates of COVID-19, providing mechanistic insights, potential markers of clinical severity, and potential therapeutic targets.FUNDING Boettcher Foundation Webb-Waring Biomedical Research Award; National Institute of General and Medical Sciences, NIH; and National Heart, Lung, and Blood Institute, NIH.

Authors

Tiffany Thomas, Davide Stefanoni, Julie A. Reisz, Travis Nemkov, Lorenzo Bertolone, Richard O. Francis, Krystalyn E. Hudson, James C. Zimring, Kirk C. Hansen, Eldad A. Hod, Steven L. Spitalnik, Angelo D’Alessandro

×

Usage data is cumulative from December 2024 through December 2025.

Usage JCI PMC
Text version 2,424 399
PDF 186 102
Figure 601 25
Supplemental data 250 32
Citation downloads 124 0
Totals 3,585 558
Total Views 4,143
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts